Skip to main content
Log in

Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

An efficient DNA-mediated transformation system for the pathogen of chestnut, Cryphonectria parasitica, is reported. Ten vectors, each containing a promoter from Cochliobolus heterostrophus, Aspergillus nidulans, Ustilago maydis, Cephalosporium acremonium, Neurospora crassa or cauliflower mosaic virus, were creened for their ability to confer resistance to hygromycin B, benomyl or G418 sulfate. Transformants were obtained with all vectors screened and, in each case, transformation occurred by integration of the foreign DNA into the host genome. The initial transformation efficiency ranged from approximately 1–60 transformants/μg circular DNA. Under optimized transformation conditions, the transformation rate of the vector pDH25, which contains the trpC promoter and terminator of A. nidulans, exceeded 105 transformants/μg DNA. The ease with which C. parasitica is transformed should greatly facilitate the genetic manipulation of this fungal plant pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostakis SI (1982) Science 215:466–471

    Google Scholar 

  • Banks GR (1983) Curr Genet 7:73–77

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Case ME, Schweizer M, Kushner SR, Giles NH (1979) Proc Natl Acad Sci USA 76:5259–5263

    Google Scholar 

  • Cleveland DW, Sullivan KF (1985) Annu Rev Biochem 54:331–365

    Google Scholar 

  • Cullen D, Leong SA, Wilson LJ, Henner DJ (1987) Gene 57:21–26

    Google Scholar 

  • Day PR, Dodds JA, Elliston JE, Jaynes RA, Anagnostakis SL (1977) Phytopathology 67:1393–1396

    Google Scholar 

  • Dickman MB (1988) Curr Genet 14:241–246

    Google Scholar 

  • Dickman MB, Kolattukudy PE (1987) Phytopthology 77:1740

    Google Scholar 

  • Hanahan D (1983) J Mol Biol 166:557–580

    Google Scholar 

  • Hansen DR, Van Alfen NK, Gillies K, Powell WA (1985) J Gen Virol 66:2605–2614

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Jimenez A, Davies J (1980) Nature 287:869–871

    Google Scholar 

  • Kaster KR, Burgett SG, Ingolia TD (1984) Curr Genet 8:353–358

    Google Scholar 

  • Krieg P, Melton DA (1985) Promega Notes 1:6

    Google Scholar 

  • Marek ET, Schardl CL, Smith DA (1989) Curr Genet 15:421–428

    Google Scholar 

  • Mishra NC (1979) J Gen Microbiol 113:255–259

    Google Scholar 

  • Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE (1985) Mol Gen Genet 199:37–45

    Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Nature 313:810–812

    Google Scholar 

  • Oliver RP, Roberts IN, Harling R, Kenyon L, Punt PJ, Dingemanse MA, van den Hondel CAMJJ (1987) Curr Genet 12:231–233

    Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Mol Cell Biol 6:2452–2461

    Google Scholar 

  • Panaccione DG, McKiernan M, Hanau RM (1988) Mol Plant Micro Inter 1:113–120

    Google Scholar 

  • Parsons KA, Chumley FG, Valent B (1987) Proc Natl Acad Sci USA 84:4161–4165

    Google Scholar 

  • Perkins DD (1977) Neurospora Newsl 24:16–17

    Google Scholar 

  • Powell WA, Benny UK, Kistler HC (1987) Phytopathology 77:1696

    Google Scholar 

  • Powell WA, Van Alfen NK (1987a) Mol Cell Biol 7:3688–3693

    Google Scholar 

  • Powell WA, Van Alfen NK (1987b) J Bacteriol 169:5324–5326

    Google Scholar 

  • Puhalla JE, Anagnostakis SL (1971) Phytopathology 61:169–173

    Google Scholar 

  • Punt PJ, Dingemanse MA, Jacobs-Meijsing BJM, Pouwels PH, van den Hondel CAMJJ (1988) Gene 69:49–57

    Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Gene 56:117–124

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rodriguez RJ, Yoder OC (1987) Gene 54:73–81

    Google Scholar 

  • Samson SM, Belagaje R, Blankenship DT, Chapman JL, Perry D, Skatrud PL, Van Frank RM, Abraham EP, Baldwin JE, Queener SW, Ingolia TD (1985) Nature 318:191–194

    Google Scholar 

  • Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Curr Genet 12:337–348

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1985) Mol Gen Genet 201:450–453

    Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1987) Mol Cell Biol 7:3297–3305

    Google Scholar 

  • Van Alfen NK, Churchill ACL, Hansen DR, Ciuffetti LM, Van Etten HD (1988) Phytopathology 78:1549

    Google Scholar 

  • Vollmer SJ, Yanofsky C (1986) Proc Natl Acad Sci USA 83:4869–4873

    Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Proc Natl Acad Sci USA 85:865–869

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Proc Natl Acad Sci USA 81:1470–1474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Bertrand

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churchill, A.C.L., Ciuffetti, L.M., Hansen, D.R. et al. Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids. Curr Genet 17, 25–31 (1990). https://doi.org/10.1007/BF00313245

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00313245

Key words

Navigation