Skip to main content
Log in

DNA markers define plastid haplotypes in Arabidopsis thaliana

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

To identify genetic markers in the Arabidopsis thaliana plastid genome (ptDNA), we amplified and sequenced the rpl2-psbA and rbcL-accD regions in 26 ecotypes. The two regions contained eight polymorphic sites including five insertions and/or deletions (indels) involving changes in the length of A or T mononucleotide repeats and three base substitutions. The 27 alleles defined 15 plastid haplotypes, providing a practical set of ptDNA markers for the Columbia, Landsberg erecta and Wassilewskija ecotypes that are commonly used in genetic studies and also for the C24 and RLD ecotypes that are the most amenable for cell culture manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Avni A, Edelman M (1991) Direct selection for paternal inheritance of chloroplasts in sexual progeny of Nicotiana. Mol Gen Genet 225:273–277

    Article  PubMed  CAS  Google Scholar 

  • Czako M, Wilson J, Marton L (1993) Sustained root culture for generation and vegetative propagation of transgenic Arabidopsis thaliana. Plant Cell Rep 12:603–606

    Article  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  • Dovzhenko A, Dal Bosco C, Meurer J, Koop HU (2003) Efficient regeneration from cotyledon protoplasts in Arabidopsis thaliana. Protoplasma 222:107–111

    Article  PubMed  CAS  Google Scholar 

  • Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a noncoding region of the chloroplast genome. Mol Phylogenet Evol 2:52–64

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76

    Article  PubMed  CAS  Google Scholar 

  • Kahlau S, Aspinall S, Gray JC, Bock R (2006) Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 63:194–207

    Article  PubMed  CAS  Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Koop HU (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202:387–396

    Article  PubMed  CAS  Google Scholar 

  • Martinez P, Lopez C, Roldan M, Sabater B, Martin M (1997) Plastid DNA of five ecotypes of Arabidopsis thaliana: sequence of ndhG gene and maternal inheritance. Plant Sci 123:113

    Article  CAS  Google Scholar 

  • Marton L, Browse J (1991) Facile transformation of Arabidopsis. Plant Cell Rep 10:235–239

    Article  Google Scholar 

  • Medgyesy P, Pay A, Marton L (1986) Transmission of paternal chloroplasts in Nicotiana. Mol Gen Genet 204:195–198

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995a) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995b) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5:1023–1029

    Article  CAS  Google Scholar 

  • Provan J (2000) Novel chloroplast microsatellites reveal cytoplasmic variation in Arabidopsis thaliana. Mol Ecol 9:2183–2185

    Article  PubMed  CAS  Google Scholar 

  • Provan J, Campanella JJ (2003) Patterns of cytoplasmic variation in Arabidopsis thaliana (Brassicaceae) revealed by polymorphic chloroplast microsatellites. Syst Bot 28:578–583

    Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Sall T, Jakobsson M, Lind-Hallden C, Hallden C (2003) Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol 16:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R, Willmitzer L (1988) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep 7:583–586

    Article  Google Scholar 

  • Sears BB, Sokalski MB (1991) The Oenothera plastome mutator: effect of UV irradiation and nitroso-methyl urea on mutation frequencies. Mol Gen Genet 229:245–252

    Article  PubMed  CAS  Google Scholar 

  • Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol 9:2109–2118

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA 100:8828–8833

    Article  PubMed  CAS  Google Scholar 

  • Stoike LL, Sears BB (1998) Plastome mutator-induced alterations arise in Oenothera chloroplast DNA through template slippage. Genetics 149:347–353

    PubMed  CAS  Google Scholar 

  • Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420

    Article  PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lusebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Van der Graaff E, Hooykaas PJJ (1996) Improvements in the transformation of Arabidopsis thaliana C24 leaf-discs by Agrobacterium tumefaciens. Plant Cell Rep 15:572–577

    Article  Google Scholar 

  • Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118

    Article  PubMed  CAS  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Peter E. Smouse, Rutgers University, for his guidance on the phylogenetic analyses of the data. This research was supported by the NSF Eukaryotic Genetics Program (MCB—039958) and the USDA Biotechnology Risk Assessment Research Grant Program (2004-39454-15192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga.

Additional information

Communicated by R. Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azhagiri, A.K., Maliga, P. DNA markers define plastid haplotypes in Arabidopsis thaliana . Curr Genet 51, 269–275 (2007). https://doi.org/10.1007/s00294-006-0118-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0118-6

Keywords

Navigation