Skip to main content

Advertisement

Log in

Expression of mitochondrial release factor in relation to respiratory competence in yeast

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mitochondria have a single release factor that recognizes all stop codons in mRNAs. The yeast mitochondrial release factor, mRF1, is a protein of 43 kDa that emerges from its precursor by cleavage of a mitochondrial targeting sequence. mRF1 is localized exclusively in mitochondria, even when it is overproduced. A several-fold increase in mRF1 levels slightly inhibits the growth of wild-type cells on media containing a non-fermentable carbon source. A direct antisuppressor effect of overproduced mRF1 is observed, since the MRF1 gene on a multicopy plasmid causes Gly phenotypes of the leaky mit point mutations in mtDNA. We also examine steady-state mRF1 levels in a respiratory-deficient mrf1-780 mutant with inhibited mitochondrial translation. We show that both the mRF1 protein and the MRF1 transcript are elevated in mrf1-780 cells. A similar increase in mRF1 expression is observed in the rho 0 strain with no mitochondrial translation. This is indicative of retrograde signalling in the regulation of MRF1 expression. According to our hypothesis, inhibition of translation in the mrf1-780 strain is due to mitoribosome stalling at the stop codon and the observed elevated level of release factor is a secondary effect of respiratory deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Askarian-Amiri ME, Pel HJ, Guevremont D, McCaughan KK, Poole ES, Sumpter VG, Tate WP (2000) Functional characterization of yeast mitochondrial release factor 1. J Biol Chem 275:17241–17248

    Article  PubMed  CAS  Google Scholar 

  • Boguta M, Dmochowska A, Borsuk P, Wrobel K, Gargouri A, Lazowska J, Slonimski PP, Szczesniak B, Kruszewska A (1992) NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol Cell Biol 12:402–412

    PubMed  CAS  Google Scholar 

  • Bullock W, Fernandez SM, Short JM (1987) XLBlue: a high efficiency plasmid transforming recA E. coli strain with beta-galactosidase selection. Biotechniques 5:376–378

    CAS  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  PubMed  CAS  Google Scholar 

  • Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21:83–84

    Article  PubMed  CAS  Google Scholar 

  • Craigen WJ, Caskey CT (1986) Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322:273–275

    Article  PubMed  CAS  Google Scholar 

  • Donly BC, Edgar CD, Williams JM, Tate WP (1990) Tightly controlled expression systems for the production and purification of Escherichia coli release factor 1. Biochem Int 20:437–443

    PubMed  CAS  Google Scholar 

  • Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors. Mol Gen Genet 179:469–482

    Article  PubMed  CAS  Google Scholar 

  • Epstein CB, Waddle JA, Hale W, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308

    PubMed  CAS  Google Scholar 

  • Gari E, Piedrafita L, Aldea M, Herrero E (1997) A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae . Yeast 13:837–848

    Article  PubMed  CAS  Google Scholar 

  • Glick BS, Pon LA (1995) Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol 260:213–223

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Uno M, Nakamura Y (2000) A tripeptide “anticodon” deciphers stop codons in messenger RNA. Nature 403:680–684

    Article  PubMed  CAS  Google Scholar 

  • Jacq C, Pajot P, Lazowska J, Dujardin G, et al (1982) Role of introns in the yeast cytochrome b gene: cis and trans-acting signals, intron manipulation, expression and intergenic communications. In: Jacq C, et al (ed) Mitochondrial genes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Janzen DM, Frolova L, Geballe AP (2002) Inhibition of translation termination mediated by an interaction of eukaryotic release factor 1 with a nascent peptidyl-tRNA. Mol Cell Biol 22:8562–8570

    Article  PubMed  CAS  Google Scholar 

  • Kruszewska A, Slonimski PP (1984) Mitochondrial and nuclear mitoribosomal suppressors that enable misreading of ochre codons in yeast mitochondria. Curr Genet 9:11–19

    Article  Google Scholar 

  • Le GX, Philippe M, Jean-Jean O (1997) Overexpression of human release factor 1 alone has an antisuppressor effect in human cells. Mol Cell Biol 17:3164–3172

    PubMed  Google Scholar 

  • Naithani S, Saracco SA, Butler CA, Fox TD (2003) Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell 14:324–333

    Article  PubMed  CAS  Google Scholar 

  • Namy O, Rousset JP, Napthine S, Brierley I (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13:157–168

    Article  PubMed  CAS  Google Scholar 

  • Netter P, Jacq C, Carignani G, Slonimski PP (1982) Critical sequences within mitochondrial introns: cis-dominant mutations of the “cytochrome-b-like” intron of the oxidase gene. Cell 28:733–738

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TW (2002) Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286:73–79

    Article  PubMed  CAS  Google Scholar 

  • Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580

    Article  PubMed  CAS  Google Scholar 

  • Pel HJ, Maat C, Rep M, Grivell LA (1992) The yeast nuclear gene MRF1 encodes a mitochondrial peptide chain release factor and cures several mitochondrial RNA splicing defects. Nucleic Acids Res 20:6339–6346

    Article  PubMed  CAS  Google Scholar 

  • Pel HJ, Rep M, Dubbink HJ, Grivell LA (1993) Single point mutations in domain II of the yeast mitochondrial release factor mRF-1 affect ribosome binding. Nucleic Acids Res 21:5308–5315

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meisinger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    Article  PubMed  CAS  Google Scholar 

  • Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter Avanesyan MD, Tuite MF (1995) The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14:4365–4373

    PubMed  CAS  Google Scholar 

  • Stettler S, Chiannilkulchai N, Hermann-Le Denmat S, Lalo D, Lacroute F, Sentenac A, Thuriaux P (1993) A general suppressor of RNA polymerase I, II and III mutations in Saccharomyces cerevisiae. Mol Gen Genet 239:169–176

    PubMed  CAS  Google Scholar 

  • Towpik J (2005) Mitochondrial translation termination in the yeast Saccharomyces cerevisiae. PhD thesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw

  • Towpik J, Chacinska A, Ciesla M, Ginalski K, Boguta M (2004) Mutations in the yeast mrf1 gene encoding mitochondrial release factor inhibit translation on mitochondrial ribosomes. J Biol Chem 279:14096–14103

    Article  PubMed  CAS  Google Scholar 

  • Traven A, Wong JM, Xu D, Sopta M, Ingles CJ (2001) Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 276:4020–4027

    Article  PubMed  CAS  Google Scholar 

  • Uno M, Ito K, Nakamura Y (1996) Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2. Biochimie 78:935–943

    Article  PubMed  CAS  Google Scholar 

  • Valouev IA, Kushnirov VV, Ter Avanesyan MD (2002) Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil Cytoskeleton 52:161–173

    Article  PubMed  CAS  Google Scholar 

  • Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP, Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci USA 81:4819–4823

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Committee for Scientific Research (KBN) grant 3PO4A03922. We thank T. Zoladek for critical reading of the manuscript and K. Machula for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Boguta.

Additional information

Communicated by M. Brunner

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Towpik, J., Kutner, J. & Boguta, M. Expression of mitochondrial release factor in relation to respiratory competence in yeast. Curr Genet 48, 101–108 (2005). https://doi.org/10.1007/s00294-005-0582-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0582-4

Keywords

Navigation