Skip to main content

The ARG8m Reporter for the Study of Yeast Mitochondrial Translation

  • Protocol
  • First Online:
The Mitoribosome

Abstract

Mitochondrial translation is an intricate process involving both general and mRNA-specific factors. In addition, in the yeast Saccharomyces cerevisiae, translation of mitochondrial mRNAs is coupled to assembly of nascent polypeptides into the membrane. ARG8m is a reporter gene widely used to study the mechanisms of yeast mitochondrial translation. This reporter is a recodified gene that uses the mitochondrial genetic code and is inserted at the desired locus in the mitochondrial genome. After deletion of the endogenous nuclear gene, this reporter produces Arg8, an enzyme necessary for arginine biosynthesis. Since Arg8 is a soluble protein with no relation to oxidative phosphorylation, it is a reliable reporter to study mitochondrial mRNAs translation and dissect translation form assembly processes. In this chapter, we explain how to insert the ARG8m reporter in the desired spot in the mitochondrial DNA, how to analyze Arg8 synthesis inside mitochondria, and how to follow steady-state levels of the protein. We also explain how to use it to find spontaneous suppressors of translation defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnefoy N, Fox TD (2007) Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol Biol 372:153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. García-Guerrero AE et al (2016) Chapter 6. In: Hernández G, Jagus R (eds) Evolution of the protein synthesis machinery and its regulation. Springer, Cham, Switzerland, pp 109–142

    Chapter  Google Scholar 

  3. Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 93:5253–5257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen JS, Fox TD (2001) Expression of green fluorescent protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion 1:181–189

    Article  CAS  PubMed  Google Scholar 

  5. Suhm T et al (2018) A novel system to monitor mitochondrial translation in yeast. Microb Cell 5:158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mireau H, Arnal N, Fox TD (2003) Expression of Barstar as a selectable marker in yeast mitochondria. Mol Gen Genomics 270:1–8

    Article  CAS  Google Scholar 

  7. Mookerjee SA et al (2013) In: Figurski D (ed) Genetic manipulation of DNA and protein -examples from current research, vol 19. Intech Open, London, pp 393–416

    Google Scholar 

  8. Bonnefoy N, Fox TD (2000) In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol Gen Genet 262:1036–1046

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Martinez X, Broadley SA, Fox TD (2003) Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p. EMBO J 22:5951–5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanchirico ME, Fox TD, Mason TL (1998) Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J 17:5796–5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rak M, Tzagoloff A (2009) F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase. Proc Natl Acad Sci U S A 106:18509–18514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gruschke S et al (2011) Cbp3-Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome b synthesis and assembly. J Cell Biol 193:1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heimberg H et al (1990) Escherichia coli and Saccharomyces cerevisiae acetylornithine aminotransferase: evolutionary relationship with ornithine aminotransferase. Gene 90:69–78

    Article  CAS  PubMed  Google Scholar 

  14. Duvezin-Caubet S et al (2006) A “petite obligate” mutant of Saccharomyces cerevisiae: functional mtDNA is lethal in cells lacking the delta subunit of mitochondrial F1-ATPase. J Biol Chem 281:16305–16313

    Article  CAS  PubMed  Google Scholar 

  15. Zakharov IA, Yarovoy BP (1977) Cytoduction as a new tool in studying the cytoplasmic heredity in yeast. Mol Cell Biochem 14:15–18

    Article  CAS  PubMed  Google Scholar 

  16. Dorweiler JE, Manogaran AL (2021) Cytoduction and plasmiduction in yeast. Bio Protoc 11:e4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conde J, Fink GR (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A 73:3651–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carlström A, Rzepka M, Ott M (2021) The analysis of yeast mitochondrial translation. Methods Mol Biol 2192:227–242

    Article  PubMed  Google Scholar 

  19. Markwell MA et al (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  21. Burke D, Dawson D, Stearns T, Cold Spring Harbor Laboratory (2000) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual, 2000th edn. Cold Spring Harbor Laboratory Press, Plainview, N.Y, p xvii, 205 p

    Google Scholar 

  22. Dunham MJ, Gartenberg MR, Brown GW (2015) Methods in yeast genetics and genomics: a Cold Spring Harbor Laboratory course manual/Maitreya J. Dunham, University of Washington, Marc R. Gartenberg, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Grant W. Brown, University of Toronto, 2015th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, p xvii, 233 pages

    Google Scholar 

  23. Manthey GM, McEwen JE (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J 14:4031–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dieckmann CL, Tzagoloff A (1985) Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem 260:1513–1520

    Article  CAS  PubMed  Google Scholar 

  25. Gruschke S et al (2012) The Cbp3-Cbp6 complex coordinates cytochrome b synthesis with bc(1) complex assembly in yeast mitochondria. J Cell Biol 199:137–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barrientos A, Zambrano A, Tzagoloff A (2004) Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J 23:3472–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mashkevich G et al (1997) SHY1, the yeast homolog of the mammalian SURF-1 gene, encodes a mitochondrial protein required for respiration. J Biol Chem 272:14356–14364

    Article  CAS  PubMed  Google Scholar 

  28. García-Guerrero AE et al (2018) Cbp3 and Cbp6 are dispensable for synthesis regulation of cytochrome. J Biol Chem 293:5585–5599

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ding MG et al (2009) Chapter 27: An improved method for introducing point mutations into the mitochondrial cytochrome B gene to facilitate studying the role of cytochrome B in the formation of reactive oxygen species. Methods Enzymol 456:491–506

    Article  CAS  PubMed  Google Scholar 

  30. Rak M et al (2007) Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem 282:10853–10864

    Article  CAS  PubMed  Google Scholar 

  31. Bietenhader M et al (2012) Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 8:e1002876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Consejo Nacional de Ciencia y Tecnología (CONACyT) [47514 to XP-M] and fellowship [777444 to D. F-M]; and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, (PAPIIT), UNAM [IN202720 and IN223623 to XP-M].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xochitl Pérez-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Flores-Mireles, D., Camacho-Villasana, Y., Pérez-Martínez, X. (2023). The ARG8m Reporter for the Study of Yeast Mitochondrial Translation. In: Barrientos, A., Fontanesi, F. (eds) The Mitoribosome. Methods in Molecular Biology, vol 2661. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3171-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3171-3_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3170-6

  • Online ISBN: 978-1-0716-3171-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics