Skip to main content
Log in

A role for KEM1 at the START of the cell cycle in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

KEM1 is a Saccharomyces cerevisiae gene, conserved in all eukaryotes, whose deletion leads to pleiotropic phenotypes. For the most part, these phenotypes are thought to arise from Kem1p’s role in RNA turnover, because Kem1p is a major 5′–3′ cytoplasmic exonuclease. For example, the exonuclease-dependent role of Kem1p is involved in the exit from mitosis, by degrading the mRNA of the mitotic cyclin CLB2. Here, we describe the identification of a KEM1 truncation, KEM1 1-975, that accelerated the G1 to S transition and initiation of DNA replication when over-expressed. Interestingly, although this truncated Kem1p lacked exonuclease activity, it could efficiently complement another function affected by the loss of KEM1, microtubule-dependent nuclear migration. Taken together, the results we report here suggest that Kem1p might have a previously unrecognized role at the G1 to S transition, but not through its exonuclease activity. Our findings also support the notion that Kem1p is a multifunctional protein with distinct and separable roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136:761–773

    Article  PubMed  CAS  Google Scholar 

  • Bogomolnaya LM et al (2004) A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae. Curr Genet 45:350–359

    Article  PubMed  CAS  Google Scholar 

  • Breeden LL (2000) Cyclin transcription: timing is everything. Curr Biol 10:R586–R588

    Article  PubMed  CAS  Google Scholar 

  • Bryan BA, McGrew E, Lu Y, Polymenis M (2004) Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics 271:72–81

    Article  PubMed  CAS  Google Scholar 

  • Caponigro G, Parker R (1996) Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 60:233–249

    PubMed  CAS  Google Scholar 

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154

    Article  PubMed  CAS  Google Scholar 

  • Cross FR (1988) DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8:4675–4684

    PubMed  CAS  Google Scholar 

  • Cross FR (1990) Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating- pheromone signalling pathway. Mol Cell Biol 10:6482–6490

    PubMed  CAS  Google Scholar 

  • Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13:52–70

    Article  PubMed  CAS  Google Scholar 

  • Dykstra CC, Kitada K, Clark AB, Hamatake RK, Sugino A (1991) Cloning and characterization of DST2, the gene for DNA strand transfer protein beta from Saccharomyces cerevisiae. Mol Cell Biol 11:2583–2592

    PubMed  CAS  Google Scholar 

  • Fraschini R, Formenti E, Lucchini G, Piatti S (1999) Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 145:979–991

    Article  PubMed  CAS  Google Scholar 

  • Futcher B (2002) Transcriptional regulatory networks and the yeast cell cycle. Curr Opin Cell Biol 14:676–683

    Article  PubMed  CAS  Google Scholar 

  • Gill T, Cai T, Aulds J, Wierzbicki S, Schmitt ME (2004) RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24:945–953

    Article  PubMed  CAS  Google Scholar 

  • Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S, Tollervey D (1994) The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J 13:2452–2463

    PubMed  CAS  Google Scholar 

  • Heyer WD, Johnson AW, Reinhart U, Kolodner RD (1995) Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol Cell Biol 15:2728–2736

    PubMed  CAS  Google Scholar 

  • Interthal H, Bellocq C, Bahler J, Bashkirov VI, Edelstein S, Heyer WD (1995) A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae. EMBO J 14:1057–1066

    PubMed  CAS  Google Scholar 

  • Jacobs CW, Adams AE, Szaniszlo PJ, Pringle JR (1988) Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol 107:1409–1426

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400

    Article  PubMed  CAS  Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Kastenmayer JP, Green PJ (2000) Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm. Proc Natl Acad Sci USA 97:13985–13990

    Article  PubMed  CAS  Google Scholar 

  • Kim J (2002) KEM1 is involved in filamentous growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 216:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Jeon S, Yang YS (2004) Posttranscriptional regulation of the karyogamy gene by Kem1p/Xrn1p exoribonuclease and Rok1p RNA helicase of Saccharomyces cerevisiae. Biochem Biophys Res Commun 321:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Ljungdahl PO, Fink GR (1990) kem mutations affect nuclear fusion in Saccharomyces cerevisiae. Genetics 126:799–812

    PubMed  CAS  Google Scholar 

  • Kipling D, Tambini C, Kearsey SE (1991) rar mutations which increase artificial chromosome stability in Saccharomyces cerevisiae identify transcription and recombination proteins. Nucleic Acids Res 19:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Kolodner R, Evans DH, Morrison PT (1987) Purification and characterization of an activity from Saccharomyces cerevisiae that catalyzes homologous pairing and strand exchange. Proc Natl Acad Sci USA 84:5560–5564

    Article  PubMed  CAS  Google Scholar 

  • Larimer FW, Hsu CL, Maupin MK, Stevens A (1992) Characterization of the XRN1 gene encoding a 5′-->3′ exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene 120:51–57

    Article  PubMed  CAS  Google Scholar 

  • Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282

    Article  PubMed  CAS  Google Scholar 

  • Longtine MS, et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  PubMed  CAS  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7:4335–4346

    PubMed  CAS  Google Scholar 

  • Page AM, Davis K, Molineux C, Kolodner RD, Johnson AW (1998) Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res 26:3707–3716

    Article  PubMed  CAS  Google Scholar 

  • Polymenis M, Schmidt EV (1997) Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 11:2522–2531

    PubMed  CAS  Google Scholar 

  • Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JD, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 97–142

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schaefer JB, Breeden LL (2004) RB from a bud’s eye view. Cell 117:849–850

    Article  PubMed  CAS  Google Scholar 

  • Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244

    Article  PubMed  CAS  Google Scholar 

  • Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808

    Article  PubMed  CAS  Google Scholar 

  • Solinger JA, Pascolini D, Heyer WD (1999) Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol Cell Biol 19:5930–5942

    PubMed  CAS  Google Scholar 

  • Spellman PT et al (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    PubMed  CAS  Google Scholar 

  • Stevens A, Hsu CL, Isham KR, Larimer FW (1991) Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′–3′ exoribonuclease 1. J Bacteriol 173:7024–7028

    PubMed  CAS  Google Scholar 

  • Stevens A, Poole TL (1995) 5′-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J Biol Chem 270:16063–16069

    Article  PubMed  CAS  Google Scholar 

  • Szankasi P, Smith GR (1996) Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae Sep1, for normal mitotic growth and viability. Curr Genet 30:284–293

    Article  PubMed  CAS  Google Scholar 

  • Tishkoff DX, Rockmill B, Roeder GS, Kolodner RD (1995) The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination. Genetics 139:495–509

    PubMed  CAS  Google Scholar 

  • Wijnen H, Futcher B (1999) Genetic analysis of the shared role of CLN3 and BCK2at the G(1)-S transition in Saccharomyces cerevisiae. Genetics 153:1131–1143

    PubMed  CAS  Google Scholar 

  • Zettel MF et al (2003) The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression. FEMS Microbiol Lett 223:253–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Miller for flow cytometry; and A. Johnson and F. Cross for generously providing us with reagents. This work was supported by a grant from the National Institutes of Health (R01-GM062377) to M.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Polymenis.

Additional information

Communicated by Per Sunnerhagen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, R., Bogomolnaya, L.M., Guo, J. et al. A role for KEM1 at the START of the cell cycle in Saccharomyces cerevisiae . Curr Genet 48, 300–309 (2005). https://doi.org/10.1007/s00294-005-0030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0030-5

Keywords

Navigation