Skip to main content
Log in

A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Mechanisms that coordinate cell growth with division are thought to determine the timing of initiation of cell division and to limit overall cell proliferation. To identify genes involved in this process in Saccharomyces cerevisiae, we describe a method that does not rely on cell size alterations or resistance to pheromone. Instead, our approach was based on the cell surface deposition of the Flo1p protein in cells having passed START. We found that over-expression of HXT11 (which encodes a plasma membrane transporter), PPE1 (coding for a protein methyl esterase), or SIK1 (which encodes a protein involved in rRNA processing) shortened the duration of the G1 phase of the cell cycle, prior to the initiation of DNA replication. In addition, we found that, although SIK1 was not part of a mitotic checkpoint, SIK1 over-expression caused spindle orientation defects and sensitized G2/M checkpoint mutant cells. Thus, unlike HXT11 and PPE1, SIK1 over-expression is also associated with mitotic functions. Overall, we used a novel enrichment approach and identified genes that were not previously associated with cell cycle progression. This approach can be extended to other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bony M, Barre P, Blondin B (1998) Distribution of the flocculation protein, Flop, at the cell surface during yeast growth: the availability of flop determines the flocculation level. Yeast 14:25–35

    Article  PubMed  Google Scholar 

  • Bryan BA, McGrew E, Lu Y, Polymenis M (2003) Evidence for control of nitrogen metabolism by a START-dependent mechanism in Saccharomyces cerevisiae. Mol Genet Genomics (in press)

  • Carlson M, Botstein D (1982) Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 28:145–154

    CAS  PubMed  Google Scholar 

  • Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63:999–1011

    CAS  PubMed  Google Scholar 

  • Clotet J, Gari E, Aldea M, Arino J (1999) The Yeast Ser/Thr Phosphatases Sit4 and Ppz1 play opposite roles in regulation of the cell cycle. Mol Cell Biol 19:2408–2415

    CAS  PubMed  Google Scholar 

  • Conlon I, Raff M (2003) Differences in the way a mammalian cell and yeast cells coordinate cell growth and cell-cycle progression. J Biol 2:7

    PubMed  Google Scholar 

  • Cross FR (1988) DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8:4675–4684

    CAS  PubMed  Google Scholar 

  • Cross FR (1990) Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol Cell Biol 10:6482–6490

    CAS  PubMed  Google Scholar 

  • Dragon F, et al (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970

    Article  CAS  PubMed  Google Scholar 

  • Edwards MC, et al (1997) Human CPR (cell cycle progression restoration) genes impart a Far-phenotype on yeast cells. Genetics 147:1063–1076

    CAS  PubMed  Google Scholar 

  • Gagnon C (1983) Enzymatic carboxyl methylation of calcium-binding proteins. Can J Biochem Cell Biol 61:921–926

    CAS  PubMed  Google Scholar 

  • Han B-K, Aramayo R, Polymenis M (2003) The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae. Genetics 165:467–476

    CAS  PubMed  Google Scholar 

  • Herskowitz I (1995) MAP kinase pathways in yeast: for mating and more. Cell 80:187–197

    CAS  PubMed  Google Scholar 

  • Huh WK, et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  • Johnston LA, Prober DA, Edgar BA, Eisenman RN, Gallant P (1999) Drosophila myc regulates cellular growth during development. Cell 98:779–790

    CAS  PubMed  Google Scholar 

  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395–400

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  • Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510

    CAS  PubMed  Google Scholar 

  • Laabs TL, Markwardt DD, Slattery MG, Newcomb LL, Stillman DJ, Heideman W (2003) ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:10275–10280

    Article  CAS  PubMed  Google Scholar 

  • Lew DJ, Burke DJ (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37:251–282

    Article  CAS  PubMed  Google Scholar 

  • Longtine MS, et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    CAS  PubMed  Google Scholar 

  • Lum PY, et al (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116:121–137

    CAS  PubMed  Google Scholar 

  • Morin PJ, Downs JA, Snodgrass AM, Gilmore TD (1995) Genetic analysis of growth inhibition by GAL4-L kappa B-alpha in Saccharomyces cerevisiae. Cell Growth Differ 6:789–798

    CAS  PubMed  Google Scholar 

  • Nakamoto K, et al (2001) Increased expression of a nucleolar Nop5/Sik family member in metastatic melanoma cells: evidence for its role in nucleolar sizing and function. Am J Pathol 159:1363–1374

    CAS  PubMed  Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J 7:4335–4346

    CAS  PubMed  Google Scholar 

  • Nelson SA, Santora KE, LaRochelle WJ (2000) Isolation and characterization of a novel PDGF-induced human gene. Gene 253:87–93

    Article  CAS  PubMed  Google Scholar 

  • Nourani A, Wesolowski-Louvel M, Delaveau T, Jacq C, Delahodde A (1997) Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 17:5453–5460

    CAS  PubMed  Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    CAS  Google Scholar 

  • Palmer RE, Sullivan DS, Huffaker T, Koshland D (1992) Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 119:583–593

    CAS  PubMed  Google Scholar 

  • Polymenis M, Schmidt EV (1997) Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 11:2522–2531

    CAS  PubMed  Google Scholar 

  • Polymenis M, Schmidt EV (1999) Coordination of cell growth with cell division. Curr Opin Genet Dev 9:76–80

    CAS  PubMed  Google Scholar 

  • Prendergast JA, Murray LE, Rowley A, Carruthers DR, Singer RA, Johnston GC (1990) Size selection identifies new genes that regulate Saccharomyces cerevisiae cell proliferation. Genetics 124:81–90

    CAS  PubMed  Google Scholar 

  • Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JD, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 97–142

  • Reed SI (1980) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95:561–577

    CAS  PubMed  Google Scholar 

  • Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3:179–192

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sudbery PE, Goodey AR, Carter BL (1980) Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature 288:401–404

    CAS  PubMed  Google Scholar 

  • Tirnauer JS, O’Toole E, Berrueta L, Bierer BE, Pellman D (1999) Yeast Bim1p promotes the G1-specific dynamics of microtubules. J Cell Biol 145:993–1007

    CAS  PubMed  Google Scholar 

  • Tyers M, Tokiwa G, Nash R, Futcher B (1992) The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J 11:1773–1784

    CAS  PubMed  Google Scholar 

  • Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 12:1955–1968

    CAS  PubMed  Google Scholar 

  • Vorbruggen G, Onel S, Jackle HU, et al (2000) Restricted expression and subnuclear localization of the Drosophila gene Dnop5, a member of the Nop/Sik family of the conserved rRNA processing factors. Mech Dev 90:305–308

    Article  CAS  PubMed  Google Scholar 

  • Winzeler EA, et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Tolstykh T, Lee J, Boyd K, Stock JB, Broach JR (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J 19:5672–5681

    Article  CAS  PubMed  Google Scholar 

  • Yenush L, Mulet JM, Arino J, Serrano R (2002) The Ppz protein phosphatases are key regulators of K+ and pH homeostasis: implications for salt tolerance, cell wall integrity and cell cycle progression. EMBO J 21:920–929

    CAS  PubMed  Google Scholar 

  • Zettel MF, et al (2003) The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression. FEMS Microbiol Lett 223:253–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, et al (2002) Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr Biol 12:1992–2001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Miller for flow cytometry and thank H. Madhani, B. Futcher, and F. Cross for reagents. This work was supported by grants to M.P. from the National Institutes of Health (GM062377) and the American Heart Association—Texas Affiliate (0060115Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Polymenis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolnaya, L.M., Pathak, R., Cham, R. et al. A new enrichment approach identifies genes that alter cell cycle progression in Saccharomyces cerevisiae . Curr Genet 45, 350–359 (2004). https://doi.org/10.1007/s00294-004-0497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0497-5

Keywords

Navigation