Skip to main content
Log in

Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Fusarium oxysporum pathogenicity is believed to require the activity of cell wall-degrading enzymes. Production of these enzymes in fungi is subject to carbon catabolite repression, a process that in yeast is mostly controlled by the SNF1 (sucrose non-fermenting 1) gene. To elucidate the role of cell wall-degrading enzymes in F. oxysporum pathogenicity, we cloned and disrupted its SNF1 homologue (FoSNF1). The fosnf1 mutants had a reduced expression of several genes encoding cell wall-degrading enzymes and grew poorly on certain carbon sources. Infection assays on Arabidopsis thaliana and Brassica oleracea revealed that progression of wilt symptoms in plants infected by fosnf1 mutants was considerably delayed, in comparison with those infected by a wild-type strain. In conclusion, mutations in FoSNF1 prevent F. oxysporum from properly derepressing the production of cell wall-degrading enzymes, compromise the utilization of certain carbon sources, and reduce its virulence on A. thaliana and B. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3A, B.
Fig. 4.
Fig. 5.
Fig. 6A–F.
Fig. 7A–C.

Similar content being viewed by others

References

  • Agrios GN (1997) Plant pathology, 4th edn. Academic Press, San Diego

  • Altschul SF, et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Apel-Birkhold PC, Walton JD (1996) Cloning, disruption, and expression of two endo-1,4-B-xylanase genes, XYL2 and XYL2 from Cochliobolus carbonum. Appl Environ Microbiol 62:4129–4135

    CAS  PubMed  Google Scholar 

  • Armstrong GM, Armstrong JK (1981) Formae speciales and races of Fusarium oxysporum causing wilt diseases. Pennsylvania State University Press, University Park, Pa.

  • Carlson M, Osmond BC, Botstein D (1981) Mutants of yeast defective in sucrose utilization. Genetics 98:25–40

    CAS  PubMed  Google Scholar 

  • Carroll AM, Sweigard JA, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22

    Google Scholar 

  • Celenza JL, Carlson M (1984) Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol Cell Biol 4:49–53

    CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    CAS  PubMed  Google Scholar 

  • Deese DC, Stahmann MA (1962) Pectic enzymes and cellulase formation by Fusarium oxysporum F. cubense on stem tissues from resistant and susceptible banana plants. Phytopathology 52:247–255

    CAS  Google Scholar 

  • Dufresne M, Osbourn AE (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant-Microbe Interact 14:300–307

    Google Scholar 

  • Escher D, Bodmer-Glavas M, Barberis A, Schaffner W (2000) Conservation of glutamine-rich transactivation function between yeast and humans. Mol Cell Biol 20:2774–2782

    Article  CAS  PubMed  Google Scholar 

  • Fisher NL, Burgess LW, Toussoun TA, Nelson PE (1982) Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72:151–153

    Google Scholar 

  • Gao S, Choi GH, Shain L, Nuss DL (1996) Cloning and targeted disruption of enpg-1, the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus, Cryphonectria parasitica. Appl Environ Microbiol 62:1984–1990

    CAS  PubMed  Google Scholar 

  • García-Maceira FI, Pietro AD, Roncero MIG (2000) Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol Plant-Microbe Interact 13:359–365

    Google Scholar 

  • Halila MH, Strange RN (1997) Screening of Kabuli chickpea germplasm for resistance to Fusarium wilt. Euphytica 96:273–279

    Article  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Google Scholar 

  • Johnston SA, Springer JK, Lewis GD (1979) Fusarium moniliforme as a cause of stem and crown rot asparagus and its association with asparagus decline. Phytopathology 69:778–780

    Google Scholar 

  • Kanai T, Ogawa K, Ueda M, Tanaka A (1999) Expression of the SNF1 gene from Candida tropicalis is required for growth on various carbon sources, including glucose. Arch Microbiol 172:256–263

    Article  CAS  PubMed  Google Scholar 

  • Kroes GMLW, Sommers E, Lange W (1998) Two in vitro assays to evaluate resistance in Linum usitatissimum to Fusarium wilt disease. Eur J Plant Pathol 104:561–568

    Article  Google Scholar 

  • Lagopodi AL, et al (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant-Microbe Interact 15:172–179

    Google Scholar 

  • Lo WS, et al (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase gcn5 to regulate transcription. Science 293:1142–1146

    Article  CAS  PubMed  Google Scholar 

  • Moorman GW, Klemmer RA (1980) Fusarium oxysporum causes basal stem rot of Zygocactus truncatus. Plant Dis 64:1118–1119

    Google Scholar 

  • Mullins E, Romaine CP, Chen X, Geiser D, Raina R, Kang S (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    CAS  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    CAS  PubMed  Google Scholar 

  • O′Donnell K, Cigelnik E, Weber NS, Trappe JM (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89:48–65

    CAS  Google Scholar 

  • Palecek SP, Parikh AS, Huh JH, Kron SJ (2002) Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol Microbiol 45:453-469

    Article  CAS  PubMed  Google Scholar 

  • Petter R, Kwon-Chung KJ (1996) Disruption of the SNF1 gene abolishes trehalose utilization in the pathogenic yeast Candida glabrata. Infect Immun 64:5269–5273

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning : a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Scott-Craig JS, Cheng Y, Cervone F, De Lorenzo G, Pitkin JW, Walton JD (1998) Targeted mutants of Cochliobolus carbonum lacking the two major extracellular polygalacturonases. Appl Environ Microbiol 64:1497–1503

    CAS  PubMed  Google Scholar 

  • Sink KC, Grey WE (1999) A root-injection method to assess verticillium wilt resistance of peppermint (Mentha x piperita L.) and its use in identifying resistant somaclones of cv. Black Mitcham. Euphytica 106:223–230

    Article  Google Scholar 

  • Sweigard JA, Chumley FG, Valent B (1992) Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet 232:183–190

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Google Scholar 

  • Tonukari NJ, Scott-Craig JS, Walton JD (2000) The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12:237–247

    Article  CAS  PubMed  Google Scholar 

  • Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6273–6280

    CAS  PubMed  Google Scholar 

  • Walton JD (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118

    CAS  PubMed  Google Scholar 

  • Wu S-C, Ham K-S, Darvill AG, Albersheim P (1997) Deletion of two endo-β-1,4-xylanase genes reveals additional isozymes secreted by the rice blast fungus. Mol Plant-Microbe Interact 10:700–708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel D. Ospina-Giraldo.

Additional information

Communicated by J. Heitman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ospina-Giraldo, M.D., Mullins, E. & Kang, S. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis . Curr Genet 44, 49–57 (2003). https://doi.org/10.1007/s00294-003-0419-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0419-y

Keywords

Navigation