Skip to main content

Advertisement

Log in

Biodegradable material based on starch-g-polyvinyl acetate copolymer with bactericidal properties

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Biodegradable starch-based composite material with bactericidal properties was obtained in this work. The material is promising as environmentally safe food packaging. Native potato starch was modified by graft polymerization of vinyl acetate. The synthesis was carried out in the presence of ammonium persulfate in the alkaline medium under a temperature change mode from 70 to 80 °C. The grafting efficiency was 82% at 91, 5% conversion rate of vinyl acetate. The product of the synthesis is a homogeneous dispersion with an average particle size 2.2∙10–5 cm. The composition and chemical structure of Starch-g-PVAc copolymer were confirmed by extraction, IR spectroscopy and gel permeation chromatography. The films poured from copolymer solution are characterized by 24 MPa of breaking stress and 2.2% of strain. A copolymer-based composition with bactericidal properties was developed by introducing polyhexamethylene guanidine chloride. The composition is biodegradable. Biodegradation of the films under the action of mold fungus Aspergillus niger occurred by 96% in 28 days. The composite based on Starch-g-PVAc + PHMG-ch is promising for use in packaging, cleaning of water environment from contaminants, in medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Gibb BC (2019) Plastics are forever. Nat Chem 11:394–395

    Article  CAS  PubMed  Google Scholar 

  2. Wohner B, Pauer E, Heinrich V, Tacker M (2019) Packaging-related food losses and waste: an overview of drivers and issues. Sustainability 11(1):264

    Article  Google Scholar 

  3. Siracusa V, Blanco I (2020) Bio-polyethylene (Bio-PE), Bio-polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12(8):1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vogt BD, Stokes KK, Kumar SK (2021) Why is recycling of postconsumer plastics so challenging? ACS Appl Polym Mater 3(9):4325

    Article  CAS  Google Scholar 

  5. Jiao H, Ali SS, Alsharbaty MHM, Elsamahy T, Abdelkarim E, Schagerl M, Al-Tohamy R, Sun J (2024) A critical review on plastic waste life cycle assessment and management: challenges, research gaps, and future perspectives. Ecotoxicol Environ Saf 271:115942

    Article  CAS  PubMed  Google Scholar 

  6. Dimassi SN, Hahladakis JN, Yahia MND, Ahmad MI, Sayadi S, Al-Ghouti MA (2022) Degradation-fragmentation of marine plastic waste and their environmental implications: a critical review. Arab J Chem 15(11):104262

    Article  CAS  Google Scholar 

  7. Bhagat J, Zang L, Nishimura N, Shimada Y (2020) Zebrafish: an emerging model to study microplastic and nanoplastic toxicity. Sci Total Environ 728:138707

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Vethaak AD, Legler J (2021) Microplastics and human health. Science 371(6530):672–674

    Article  ADS  CAS  PubMed  Google Scholar 

  9. An L, Liu Q, Deng Y, Wu W, Gao Y, Ling W (2020) Sources of microplastic in the environment. In: He D, Luo Y (eds) Microplastics in terrestrial environments, 1st edn. Springer Cham, Switzerland, pp 143–159

    Chapter  Google Scholar 

  10. Stock V, Böhmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, Lampen A (2019) Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 93:1817–1833

    Article  CAS  PubMed  Google Scholar 

  11. Hu M, Palić D (2020) Micro-and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol 37:101620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Z, You X-Y (2023) Recent progress of microplastic toxicity on human exposure base on in vitro and in vivo studies. Sci Total Environ 903:166766

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Fang JM, Fowler PA, Escrig C, Gonzalez R, Costa JA, Chamudis L (2005) Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohyd Polym 60(1):39–42

    Article  CAS  Google Scholar 

  14. Trivedi AK, Gupta MK, Singh H (2023) PLA based biocomposites for sustainable products: a review. Adv Ind Eng Polym Res 6(4):382–395

    CAS  Google Scholar 

  15. Acik G (2020) Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(ε-caprolactone)s. Express Polym Lett 14(3):272–280

    Article  CAS  Google Scholar 

  16. Oun AA, Shin GH, Rhim J-W, Kim JT (2022) Recent advances in polyvinyl alcohol-based composite films and their applications in food packaging. Food Packag Shelf Life 34:100991

    Article  CAS  Google Scholar 

  17. Shaikh S, Yaqoob M, Aggarwal P (2021) An overview of biodegradable packaging in food industry. Curr Res Food Sci 4:503–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. González-López ME, Calva-Estrada SJ, Gradilla-Hernández MS, Barajas-Álvarez P (2023) Current trends in biopolymers for food packaging: a review. Front Sustain Food Syst 7:1225371

    Article  Google Scholar 

  19. Hammami I, Benhamou K, Hammami H, SoretoTeixeira S, Arous M, Kaddami H, Graça MPF, Costa LC (2019) Electrical, morphology and structural properties of biodegradable nanocomposite polyvinyl-acetate/ cellulose nanocrystals. Mater Chem Phys 240:122182

    Article  Google Scholar 

  20. Khalid S, Yu L, Feng M, Meng L, Bai Y, Ali A, Liu H, Chen L (2018) Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packag Shelf Life 18:71–79

    Article  Google Scholar 

  21. Rajeswari S, Prasanthi T, Sudha N, Swain RP, Panda S, Goka V (2017) Natural polymers: a recent review. World J Pharm Pharm Sci 6(8):472–494

    CAS  Google Scholar 

  22. Teixeira-Costa BE, Andrade CT (2022) Natural polymers used in edible food packaging—history, function and application trends as a sustainable alternative to synthetic plastic. Polysaccharides 3(1):32–58

    Article  CAS  Google Scholar 

  23. Apryatina KV, Tkachuk EK, Smirnova LA (2020) Influence of macromolecules conformation of chitosan on its graft polymerization with vinyl monomers and the copolymer properties. Carbohyd Polym 235:115954

    Article  Google Scholar 

  24. Apryatina KV, Veselov VS, Smirnova LA, Murach EI, Erlykina EI, Amarantov SV (2022) Synthesis of a bioactive composition of chitosan–selenium nanoparticles. Appl Biochem Microbiol 58(2):126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kachalova E, Apryatina K, Smirnova L (2022) Biocompatible materials based on modified starch and chitosan with high mechanical properties. In Kurchenko V, Lodygin A, Machado da Costa RM, Samoylenko I (Eds.) Intelligent biotechnologies of natural and synthetic biologically active substances (1st ed, pp 106-113). Springer, Cham

  26. Akay O, Altinkok C, Acik G, Yuce H, Ege GK (2021) A bio-based and non-toxic polyurethane film derived from Luffa cylindrica cellulose and ʟ-Lysine diisocyanate ethyl ester. Eur Polymer J 161:110856

    Article  CAS  Google Scholar 

  27. Zeghoud S, Ahmed S, Ben Amor I, Hemmami H, Ben Amor A, Aouadi A (2024) Starch for packaging materials. Biobased packaging materials: sustainable alternative to conventional packaging materials. Singapore, Springer Nature Singapore, pp 125–145

    Google Scholar 

  28. Bertoft E (2017) Understanding starch structure: recent progress. Agronomy 7(3):56

    Article  Google Scholar 

  29. Santana ÁL, Meireles MAA (2014) New starches are the trend for industry applications: a review. Food Public Health 4(5):229–241

    Article  Google Scholar 

  30. Liu G, Gu Z, Hong Y, Cheng L, Li C (2017) Structure, functionality and applications of debranched starch: a review. Trends Food Sci Technol 63:70–79

    Article  CAS  Google Scholar 

  31. Okur I, Sezer P, Oztop MH, Alpas H (2021) Recent advances in gelatinisation and retrogradation of starch by high hydrostatic pressure. Int J Food Sci Technol 56(9):4367–4375

    Article  CAS  Google Scholar 

  32. Molavi H, Behfar S, Shariati MA, Kaviani M, Atarod S (2015) A review on biodegradable starch based film. J Microbiol Biotechnol Food Sci 4(5):456–461

    Article  CAS  Google Scholar 

  33. Ashogbon AO, Akintayo ET (2014) Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch/Stärke 66:41–57

    Article  CAS  Google Scholar 

  34. Kaur B, Ariffin F, Bhat R, Karim AA (2012) Progress in starch modification in the last decade. Food Hydrocolloids 26(2):398–404

    Article  CAS  Google Scholar 

  35. Tharanathan RN (2007) Starch—value addition by modification. Crit Rev Food Sci Nutr 45(5):371–384

    Article  Google Scholar 

  36. Chen L, Ni Y, Bian X, Qiu X, Zhuang X, Chen X, Jing X (2005) A novel approach to grafting polymerization of ε-caprolactone onto starch granules. Carbohyd Polym 60(1):103–109

    Article  CAS  Google Scholar 

  37. Meshram MW, Patil VV, Mhaske ST, Thorat BN (2009) Carbohyd Polym 75(1):71–78

    Article  CAS  Google Scholar 

  38. Jyothi AN (2010) Starch graft copolymers: novel applications in industry. Compos Interfaces 17(2–3):165–174

    Article  ADS  CAS  Google Scholar 

  39. Meimoun J, Wiatz V, Saint-Loup R, Parcq J, Favrelle A, Bonnet F, Zinck Ph (2017) Modification of starch by graft copolymerization. Starch 70(1–2):1600351

    Google Scholar 

  40. Mostafa KhM, Samarkandy AR, El-Sanabary AA (2011) Grafting onto carbohydrate polymer using novel potassium persulfate/tetramethylethylene diamine redox system for initiating grafting. Adv Polym Technol 30(2):138–149

    Article  CAS  Google Scholar 

  41. Aruldass S, Mathivanan V, Mohamed AR, Tye CT (2019) Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. J Environ Chem Eng 7(5):103238

    Article  CAS  Google Scholar 

  42. Kolter K, Dashevsky A, Irfan M, Bodmeier R (2013) Polyvinyl acetate-based film coatings. Int J Pharm 457(2):470–479

    Article  CAS  PubMed  Google Scholar 

  43. Voskanyan PS (2009) Glue compositions based on polyvinyl acetate and its derivatives. Polym Sci, Ser D 2:92–96

    Article  Google Scholar 

  44. Kulshrestha N (2022) Biodegradable polymers in electronic devices. In Inamuddin, T. Altalhi (Eds), biodegradable materials and their applications (pp 773–788). Scrivener Publishing LLC

  45. Samaha SH, Nasr HE, Hebeish A (2005) Synthesis and characterization of starch-poly(vinyl acetate) graft copolymers and their saponified form. J Polym Res 12:343–353

    Article  CAS  Google Scholar 

  46. Niu Y, Li H (2012) Controlled release of urea encapsulated by starch-g-poly (vinyl acetate). Ind Eng Chem Res 51(38):12173–12177

    CAS  Google Scholar 

  47. Lai S-M, Don T-M, Liu Y-H, Chiu W-Y (2006) Graft polymerization of vinyl acetate onto granular starch: comparison on the potassium persulfate and ceric ammonium nitrate initiated system. J Appl Polym Sci 102:3017–3027

    Article  CAS  Google Scholar 

  48. Onyeaka H, Obileke K, Makaka G, Nwokolo N (2022) Current research and applications of starch-based biodegradable films for food packaging. Polymers 14(6):1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C (2023) Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohyd Polym 307:120627

    Article  CAS  Google Scholar 

  50. Papakhin AA, Kolpakova VV, Borodina ZM, Sardzhveladze AS, Vasiliev IYu (2020) Modified porous starch in development of biodegradable composite polymer materials. Food Process Tech Technol 50(3):549–558

    Article  Google Scholar 

  51. Kim S, Kang JH, Song KB (2020) Development of a sword bean (Canavalia gladiata) starch film containing goji berry extract. Food Bioprocess Technol 13:911–921

    Article  CAS  Google Scholar 

  52. Cano A, Fortunati E, Cháfer M, González-Martínez C, Chiralt A, Kenny JM (2015) Effect of cellulose nanocrystals on the properties of pea starch– poly(vinyl alcohol) blend films. J Mater Sci 50:6979–6992

    Article  ADS  CAS  Google Scholar 

  53. Kirby AR, Clark SA, Parker R, Smith AC (1993) The deformation and failure behaviour of wheat starch plasticized with water and polyols. J Mater Sci 28:5937–5942

    Article  ADS  CAS  Google Scholar 

  54. Guarás MP, Menossi M, Nicolini AT, Alvarez VA, Ludueña LN (2023) Bio-nanocomposites films based on unmodified and modified thermoplastic starch reinforced with chemically modified nanoclays. J Mater Sci 58:5456–5476

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  55. Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch based films for packaging. Carbohyd Polym 129:127–134

    Article  CAS  Google Scholar 

  56. Cherepanova, N. P. (2004). Sistematika gribov [Systematics of fungi]: uch. Posobie. S Petersburg: izd-vo SPbGU. 348 p. (In Russian)

  57. Lysak VV (2007) Mikrobiologija [Microbiology]: uch. Posobie. Minsk: BGU. 426 p. (In Russian)

  58. Feng W, Liu N, Gao L, Zhou Q, Yu L, Ye X, Huang W (2021) Rapid inactivation of multidrug-resistant bacteria and enhancement of osteoinduction via titania nanotubes grafted with polyguanidines. J Mater Sci Technol 69:188–199

    Article  CAS  Google Scholar 

  59. Jiang Y, Zheng A, Guan Y, Wei D, Xu X, Gong W (2021) Gene reconstruction spandex with intrinsic antimicrobial activity. Chem Eng J 404:125152

    Article  CAS  Google Scholar 

  60. Bof MJ, Jiménez A, Locaso DE, García MA, Chiralt A (2016) Grapefruit seed extract and lemon essential oil as active agents in corn starch-chitosan blend films. Food Bioprocess Technol 9:2033–2045

    Article  CAS  Google Scholar 

  61. Motta JFG, de Souza AR, Gonçalves SM, Francisco DKSM, de Carvalho CWP, Vitorazi L, de Melo NR (2020) Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. Food Bioprocess Technol 13:2082–2093

    Article  CAS  Google Scholar 

  62. Berti S, Jagus RJ, Flores SK (2021) Effect of rice bran addition on physical properties of antimicrobial biocomposite films based on starch. Food Bioprocess Technol 14:1700–1711

    Article  CAS  Google Scholar 

  63. Yin J-Y (2015) Effect of calcium on solution and conformational characteristics of polysaccharide from seeds of Plantago asiatica L. Carbohyd Polym 124:331–336

    Article  CAS  Google Scholar 

  64. Subramanian A, Rodriguez-Saona L (2009) Fourier transform infrared (FTIR) spectroscopy. In infrared spectroscopy for food quality analysis and control; Elsevier, Amsterdam, The Netherlands, pp 145–178

    Google Scholar 

  65. Todica M, Nagy EM, Niculaescu C, Stan O, Cioica N, Pop CV (2016) XRD investigation of some thermal degraded starch based materials. J Spectrosc 2016:1–6

    Article  Google Scholar 

  66. Gaborieau M, Castignolles P (2010) Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal Bioanal Chem 399(4):1413–1423

    Article  PubMed  PubMed Central  Google Scholar 

  67. Smirnov VF, Glagoleva AA, Mochalova AE, Smirnova LA, Anikina NA (2018) The influence of factors of a biological and physical nature on the biodegradation and physicochemical properties of composites based on polyvinyl chloride and natural polymers. Int Polym Sci Technol 45(6):283–288

    Article  Google Scholar 

  68. Borisov AV (2019) Synthesis and application of 2-selanylpyridine-1-oxide derivatives to protect materials from biodamage. Lap lambert academic publishing, United Kingdom, p 200p

    Google Scholar 

  69. Rihter M, Augustat S, Schierbaum F (1968) Ausgewahlte methoden der starkechemie. Fachbuchverl, Leipzig ((Chapter 11))

    Google Scholar 

  70. Hung PV, Morita N (2005) Physicochemical properties of hydroxypropylated and cross-linked starches from a-type and b-type wheat starch granules. Carbohyd Polym 59(2):239–246

    Article  Google Scholar 

  71. Jyothi AN, Carvalho AJF (2020) Starch-g-Copolymers: synthesis, properties and applications. In: Kalia S, Sabaa MW (eds) Polysaccharide based graft copolymers. Springer, Berlin, Heidelberg, pp 59–109

    Google Scholar 

  72. Hsu SC, Don TM, Chiu WY (2002) Free radical degradation of chitosan with potassium persulfate. Polym Degrad Stab 75(1):73–83

    Article  CAS  Google Scholar 

  73. Morais IPA, Tóth IV, Rangel AOSS (2006) Turbidimetric and nephelometric flow analysis: concepts and applications. Spectroscop Lett An Int J Rapid Commun 39(6):547–579

    ADS  CAS  Google Scholar 

  74. Athawale VD, Lele V (2000) Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile. Carbohyd Polym 41:407–416

    Article  CAS  Google Scholar 

  75. Alfei S, Schito AM (2020) Positively charged polymers as promising devices against multidrug resistant gram-negative bacteria: a review. Polymers 12(5):1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Junlapong K, Boonsuk P, Chaibundit C, Chantarak S (2019) Highly water resistant cassava starch/poly(vinyl alcohol) films. Int J Biol Macromol 137:521–527

    Article  CAS  PubMed  Google Scholar 

  77. Le Bolay N, Molina-Boisseau S (2014) Production of PVAc–starch composite materials by co-grinding—Influence of the amylopectin to amylose ratio on the properties. Powder Technol 255:36–43

    Article  Google Scholar 

  78. Lin D, Huang Y, Liu Y, Luo T, Xing B, Yang Y, Qin W (2018) Physico-mechanical and structural characteristics of starch/polyvinyl alcohol/nano-titania photocatalytic antimicrobial composite films. LWT-Food Sci Technol 96:704–712

    Article  CAS  Google Scholar 

  79. Zotov KA (2011) Destrukciya mikromicetami kompozicij na osnove sopolimerov hitozana s vinilovymi monomerami [Destruction of compositions based on chitosan copolymers with vinyl monomers by micromycetes]. Biotekhnologiya [Biotechnol] 4:47–56 ((In Russian))

    Google Scholar 

Download references

Acknowledgements

The research was partial supported via State assignment in the Research scientific laboratory of "Chemistry of natural products and their synthetic analogues" of Scientific Educational Centre "Technoplatform 2035" (FSWR-2024-0002).

Funding

This work was financial supported by grant of the Russian Science Foundation (project no. 23–13-00342).

Author information

Authors and Affiliations

Authors

Contributions

AM and KA wrote the main manuscript text with support from LSAM, OS, PY carried out the experiments. AM and KA prepared figures. SZ, LS supervised the project.

Corresponding author

Correspondence to K. V. Apryatina.

Ethics declarations

Conflicts of interests

All authors confirm that there are no known competing interests associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monina, A.P., Apryatina, K.V., Zaitsev, S.D. et al. Biodegradable material based on starch-g-polyvinyl acetate copolymer with bactericidal properties. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05205-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05205-0

Keywords

Navigation