Skip to main content
Log in

Investigation on the crystallinity of crosslinked polyethylene

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High voltage AC/DC cables require thicker insulation to ensure excellent insulation performance. Selecting the appropriate crosslinker to design the crosslink and crystalline structure of XLPE is key to the insulating properties. Although the crystallinity of XLPE has been extensively studied by using X-ray diffraction and differential scanning calorimeters, few researchers have designed in situ experiments to observe its structure. In this paper, we have created an in situ observational experiment to monitor the structural changes of XLPE insulation. XLPE formed by DTAP crosslinker produces lower gas byproducts, which can effectively reduce the degassing time and energy consumption. The test results and COMSOL simulations indicate that the XLPE formed by straight-chain alkane crosslinkers has better mechanical, thermal and electrical insulating properties than cyclic alkane crosslinkers. Our work is of great significance for selecting suitable crosslinker to control the structure of XLPE and determining the production conditions for high-voltage cables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Thomas J, Joseph B, Jose JP et al (2019) Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind Eng Chem Res 58:20863–20879. https://doi.org/10.1021/acs.iecr.9b02172

    Article  CAS  Google Scholar 

  2. Bawareth M, Xu W, Ravichandran D et al (2022) Crosslinked polyethylene (XLPE) recycling via foams. Polymers 14:2589. https://doi.org/10.3390/polym14132589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel K, Chikkali SH, Sivaram S (2020) Ultrahigh molecular weight polyethylene: catalysis, structure, properties, processing and applications. Prog Polym Sci 109:101290. https://doi.org/10.1016/j.progpolymsci.2020.101290

    Article  CAS  Google Scholar 

  4. Hussain M, Naqvi RA, Abbas N et al (2020) Ultra-high-molecular-weight-polyethylene (UHMWPE) as a promising polymer material for biomedical applications: a concise review. Polymers 12:323. https://doi.org/10.3390/polym12020323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding M, He W, Wang J et al (2022) Performance evaluation of cross-linked polyethylene insulation of operating 110 kV power cables. Polymers 14:2282. https://doi.org/10.3390/polym14112282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gill YQ, Ehsan H, Mehmood U et al (2022) A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites. Polym Bull 79:10077–10093. https://doi.org/10.1007/s00289-021-03989-z

    Article  CAS  Google Scholar 

  7. Huang S, Zhou Y, Hu S et al (2023) Comprehensive properties of grafted polypropylene insulation materials for Ac/Dc distribution power cables. Energies 16:4701. https://doi.org/10.3390/en16124701

    Article  CAS  Google Scholar 

  8. Li W, Zhao W, Peng W et al (2023) Influence of cross-linking characteristics of DC cable insulation on DC performance. In: 2023 IEEE 4th ICEMPE: IEEE, pp 1–4

  9. Wu Y, Wang S, Zhou H et al (2023) Effect of antioxidants on crystalline structure of crosslinked polyethylene for power cables. In: 2023 IEEE 4th ICEMPE: IEEE, pp 1–4

  10. Zhao Y, Han Z, Xie Y et al (2020) Correlation between thermal parameters and morphology of cross-linked polyethylene. IEEE Access 8:19726–19736. https://doi.org/10.1109/ACCESS.2020.2968109

    Article  Google Scholar 

  11. Hettal S, Roland S, Colin X (2022) Consequences of radiothermal ageing on the crystalline morphology of additive-free silane-crosslinked polyethylene. Polymers 14:2912. https://doi.org/10.3390/polym14142912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kourtidou D, Symeou E, Terzopoulou Z et al (2021) Graphite reinforced silane crosslinked high density polyethylene: the effect of filler loading on the thermal and mechanical properties. Polym Compos 42:1181–1197. https://doi.org/10.1002/pc.25892

    Article  CAS  Google Scholar 

  13. Mostofi Sarkari N, Dogan O, Bat E et al (2020) Tethering vapor-phase deposited glymo coupling molecules to silane-crosslinked polyethylene surface via plasma grafting approaches. Appl Surf Sci 513:145846. https://doi.org/10.1016/j.apsusc.2020.145846

    Article  CAS  Google Scholar 

  14. Cardoso PSM, Ueki MM, Barbosa JDV et al (2021) The effect of dialkyl peroxide crosslinking on the properties of LLDPE and UHMWPE. Polymers 13:3062. https://doi.org/10.3390/polym13183062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Yao R, Tong Y et al (2023) The influence of PS nanoparticle on dielectric properties of LLDPE. Polym Bull. https://doi.org/10.1007/s00289-023-05120-w

    Article  Google Scholar 

  16. Zhang Y, Ben Jar PY, Xue S et al (2019) Quantification of strain-induced damage in semi-crystalline polymers: a review. J Mater Sci 54:62–82. https://doi.org/10.1007/s10853-018-2859-2

    Article  CAS  ADS  Google Scholar 

  17. Yan Z, Zaoui A, Zairi F (2021) Crystallization and mechanical behavior of semi-crystalline polyethylene. Phys Scr 96:125729. https://doi.org/10.1088/1402-4896/ac3a4f

    Article  ADS  Google Scholar 

  18. Tantry S, Anantharaman D, Thimmappa BHS et al (2020) Studying banded spherulites in HDPE by electron microscopy. Polym Test 89:106631. https://doi.org/10.1016/j.polymertesting.2020.106631

    Article  CAS  Google Scholar 

  19. Jia Y, Mao Z, Huang W et al (2022) Effect of temperature and crystallinity on the thermal conductivity of semi-crystalline polymers: a case study of polyethylene. Mater Chem Phys 287:126325. https://doi.org/10.1016/j.matchemphys.2022.126325

    Article  CAS  Google Scholar 

  20. Hiejima Y, Kida T, Nitta K-H (2021) In situ Raman spectroscopic observation of polymer chains in semi-crystalline polyethylene solids. Z Phys Chem 235:59–79. https://doi.org/10.1515/zpch-2020-1618

    Article  CAS  Google Scholar 

  21. Olsson PAT, Andreasson E et al (2018) All-atomic and coarse-grained molecular dynamics investigation of deformation in semi-crystalline lamellar polyethylene. Polymer 153:305–316. https://doi.org/10.1016/j.polymer.2018.07.075

    Article  CAS  Google Scholar 

  22. Ishikawa M, Ushui K, Hatada K (1996) Stability of plastic deformation in polyolefins. Polymer 37:1601–1605. https://doi.org/10.1016/0032-3861(96)83708-6

    Article  CAS  Google Scholar 

  23. Lin L, Argon AS (1994) Structure and plastic-deformation of polyethylene. J Mater Sci 29:294–323. https://doi.org/10.1007/bf01162485

    Article  CAS  ADS  Google Scholar 

  24. Bartczak Z, Bartczak Z (2010) Plasticity of semicrystalline polymers. Macromol Symp 294:67–90. https://doi.org/10.1002/masy.201050807

    Article  CAS  Google Scholar 

  25. Puppulin L, Takahashi Y, Zhu W et al (2011) Raman polarization analysis of highly crystalline polyethylene fiber. J Raman Spectrosc 42:482–487. https://doi.org/10.1002/jrs.2725

    Article  CAS  ADS  Google Scholar 

  26. Colomban P, Ramirez JMH, Paquin R et al (2006) Micro-Raman study of the fatigue and fracture behaviour of single PA66 fibres: comparison with single PET and PP fibres. Eng Fract Mech 73:2463–2475. https://doi.org/10.1016/j.engfracmech.2006.04.033

    Article  Google Scholar 

  27. Duchet J, Gérard J-FO, Chapel JP et al (2010) Crystalline morphology at the interface between polyethylene grafted glass and polyethylene. J Appl Polym Sci 87:214–229. https://doi.org/10.1002/app.11355

    Article  CAS  Google Scholar 

  28. Boucher E, Folkers JP, Creton C et al (1997) Enhanced adhesion between polypropylene and polyamide-6: role of interfacial nucleation of the beta-crystalline form of polypropylene. Macromolecules 30:2102–2109. https://doi.org/10.1021/ma961105i

    Article  CAS  ADS  Google Scholar 

  29. Boucher E, Folkers JP, Hervet H et al (1996) Effects of the formation of copolymer on the interfacial adhesion between semicrystalline polymers. Macromolecules 29:774–782. https://doi.org/10.1021/ma9509422

    Article  CAS  ADS  Google Scholar 

  30. Marzolin C, Auroy P, Deruelle M et al (2001) Neutron reflectometry study of the segment-density profiles in end-grafted and irreversibly adsorbed layers of polymer in good solvents. Macromolecules 34:8694–8700. https://doi.org/10.1021/ma010156z

    Article  CAS  ADS  Google Scholar 

  31. Baker AME, Windle AH (2001) An X-ray diffraction and modelling study of short chain branch location within the structure of polyethylene. Polymer 42:681–698. https://doi.org/10.1016/s0032-3861(00)00365-7

    Article  CAS  Google Scholar 

  32. Liu JP, Zhang FJ, Fu Q et al (2001) Influence of short chain branches on crystallization and melting behavior of low molecular weight polyethylenes. Acta Poly Sin. https://doi.org/10.1002/1097-4628(20010404)80:1

    Article  Google Scholar 

  33. Khonakdar HA, Morshedian J, Wagenknecht U et al (2003) An investigation of chemical crosslinking effect on properties of high-density polyethylene. Polymer 44:4301–4309. https://doi.org/10.1016/S0032-3861(03)00363-X

    Article  CAS  Google Scholar 

  34. Pious C, Thomas S (2016) Polymeric materials-structure, properties, and applications. In: Printing on polymers, Elsevier

    Google Scholar 

  35. Aggarwal SL, Tilley GP (1955) Determination of crystallinity in polyethylene by XRD. J Polym Sci 18:17–26. https://doi.org/10.1002/pol.1955.120188702

    Article  CAS  ADS  Google Scholar 

  36. Bouhelal S, Cagiao ME, Bartolotta A et al (2010) On polyethylene chain generation through chemical crosslinking of isotactic polypropylene. J Appl Polym Sci 116:394–403. https://doi.org/10.1002/app.30903

    Article  CAS  Google Scholar 

  37. Haberfeld JL, Reffner JA (1976) Characterization of polymeric dielectric insulation. 4. Thermal optical analysis and differential scanning calorimetry of chemically crosslinked polyethylene. Thermochim Acta 15:307–313. https://doi.org/10.1016/0040-6031(76)85085-x

    Article  CAS  Google Scholar 

  38. Zhang CC, Chang JX, Zhang HY et al (2019) Improved direct current electrical properties of crosslinked polyethylene modified with the polar group compound. Polymers 11:1624. https://doi.org/10.3390/polym11101624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21978185) and Basic Research Project of Leading Technology in Jiangsu Province (BK20202012).

Author information

Authors and Affiliations

Authors

Contributions

W-JS contributed to conceptualization, methodology, investigation, formal analysis, data curation, visualization, writing original draft. L-JY and XH contributed to Resources. X-JL contributed to Supervision. J-ML contributed to Conceptualization, project administration, funding acquisition, writing review and editing, and supervision.

Corresponding authors

Correspondence to Wu-Ji Sun or Jian-Mei Lu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50008 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WJ., Liu, XJ., Yuan, LJ. et al. Investigation on the crystallinity of crosslinked polyethylene. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05177-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05177-1

Keywords

Navigation