Skip to main content
Log in

Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Stable polypyrrole (PPy)-based hydrogels as soft conducting materials are ideal in wearable electronics and elastic robotics. The development of high-performance PPy-based hydrogels is greatly desired due to the poor mechanical properties of PPy hydrogel. Here, multifunctional stable conducting hydrogels are fabricated by immersing the preprepared brittle PPy hydrogel into polyvinyl alcohol (PVA) solution followed by freeze–thaw cycles. The extensive hydrogen bonding between PPy and PVA and the entangled PVA chains further support the backbone structure of the interconnected PPy network, improving the mechanical performance of the hydrogel. PPy/PVA hydrogel exhibits attractive mechanical property with a compression strength of 70 kPa, satisfactory electrical conductivity (10 S m−1), good processability, and self-healing features. PPy/PVA/100 still retained a recovery rate of more than 90% even after 1000 cycles of 30% compression strain. Furthermore, the as-prepared hydrogel is applied to show high-quality electrochemical behavior of 120 F/g subjected to repeated compression and an electrically controlled release of fluorescein sodium with 0.70 μg/mg at − 1 V for 12 h. This facile method supplies a promising strategy to fabricate soft materials with integrated electrical and mechanical properties for the potential applications in wearable devices and flexible energy electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu Q-F, He K-X, Mi H-Y, Zhang X-G (2007) Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template. Mater Chem Phys 101:367–371. https://doi.org/10.1016/j.matchemphys.2006.06.013

    Article  CAS  Google Scholar 

  2. Wang H, Hao Q, Yang X et al (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 11:1158–1161. https://doi.org/10.1016/j.elecom.2009.03.036

    Article  CAS  Google Scholar 

  3. Wang Z, Cong Y, Fu J (2020) Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 8:3437–3459. https://doi.org/10.1039/C9TB02570G

    Article  CAS  PubMed  Google Scholar 

  4. Shegefti S, Mehdinia A, Shemirani F (2016) Preconcentration of cobalt(II) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS. Microchim Acta 183:1963–1970. https://doi.org/10.1007/s00604-016-1837-0

    Article  CAS  Google Scholar 

  5. John A, Benny L, Cherian AR et al (2021) Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. J Nanostruct Chem 11:1–31. https://doi.org/10.1007/s40097-020-00372-8

    Article  CAS  Google Scholar 

  6. Han J, Wang M, Hu Y et al (2017) Conducting polymer-noble metal nanoparticle hybrids: synthesis mechanism application. Prog Polym Sci 70:52–91. https://doi.org/10.1016/j.progpolymsci.2017.04.002

    Article  CAS  Google Scholar 

  7. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285. https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  8. Huang M, Li L, Ai Z et al (2022) One-step fabrication of ice-templated pure polypyrrole nanoparticle hydrogels for high-rate supercapacitors. ACS Appl Nano Mater 5:11940–11947. https://doi.org/10.1021/acsanm.2c02957

    Article  CAS  Google Scholar 

  9. Wan H, Qin C, Lu A (2022) A flexible, robust cellulose/phytic acid/polyaniline hydrogel for all-in-one supercapacitors and strain sensors. J Mater Chem A 10:17279–17287. https://doi.org/10.1039/D2TA03835H

    Article  CAS  Google Scholar 

  10. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  11. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716. https://doi.org/10.1016/j.biomaterials.2009.12.052

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Dai T, Wei M, Lu Y (2006) Polymerization of pyrrole on a polyelectrolyte hollow-capsule microreactor. Polymer 47:4596–4602. https://doi.org/10.1016/j.polymer.2006.04.037

    Article  CAS  Google Scholar 

  13. Chen F, Chen Q, Song Q et al (2019) Strong and stretchable polypyrrole hydrogels with biphase microstructure as electrodes for substrate-free stretchable supercapacitors. Adv Mater Interfaces 6:1900133. https://doi.org/10.1002/admi.201900133

    Article  CAS  Google Scholar 

  14. Yhobu Z, Siddiqa A, Padaki M et al (2022) Lignocellulose biopolymers and electronically conducting polymers: toward sustainable energy storage applications. Energy Fuels 36:14625–14656. https://doi.org/10.1021/acs.energyfuels.2c03101

    Article  CAS  Google Scholar 

  15. Li Y, Zhou X, Sarkar B et al (2022) Recent progress on self-healable conducting polymers. Adv Mater 34:2108932. https://doi.org/10.1002/adma.202108932

    Article  CAS  Google Scholar 

  16. Khokhar D, Jadoun S, Arif R, Jabin S (2021) Functionalization of conducting polymers and their applications in optoelectronics. Polym-Plast Technol Mater 60:465–487. https://doi.org/10.1080/25740881.2020.1819312

    Article  CAS  Google Scholar 

  17. Singh N, Riaz U (2022) Recent trends on synthetic approaches and application studies of conducting polymers and copolymers: a review. Polym Bull 79:10377–10408. https://doi.org/10.1007/s00289-021-03987-1

    Article  CAS  Google Scholar 

  18. A. Fraser S, Zyl WE van, (2022) In situ polymerization and electrical conductivity of polypyrrole/cellulose nanocomposites using Schweizer’s reagent. RSC Adv 12:22031–22043. https://doi.org/10.1039/D2RA04320C

    Article  Google Scholar 

  19. Xia T, Zhao D, Xia Q et al (2021) Realizing high performance flexible supercapacitors by electrode modification. RSC Adv 11:39045–39050. https://doi.org/10.1039/D1RA07880A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bubniene US, Ratautaite V, Ramanavicius A, Bucinskas V (2022) Conducting polymers for the design of tactile sensors. Polymers 14:2984. https://doi.org/10.3390/polym14152984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun L, Huang X, Li Y et al (2021) Controlled synthesis and lithium storage performance of NiCo2O4/PPy composite materials. J Phys Chem Solids 148:109761. https://doi.org/10.1016/j.jpcs.2020.109761

    Article  CAS  Google Scholar 

  22. Ping Z, Junjie L, Yunchun L (2022) Optimization of the electrodeposition process of a polypyrrole/multi-walled carbon nanotube fiber electrode for a flexible supercapacitor. RSC Adv 12:18134–18143. https://doi.org/10.1039/D2RA02430F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hazarika J, Kumar A (2013) Controllable synthesis and characterization of polypyrrole nanoparticles in sodium dodecylsulphate (SDS) micellar solutions. Synth Metals 175:155–162. https://doi.org/10.1016/j.synthmet.2013.05.020

    Article  CAS  Google Scholar 

  24. Wei D, Lin X, Li L et al (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836. https://doi.org/10.1039/C2SM27253A

    Article  CAS  Google Scholar 

  25. Shi Y, Pan L, Liu B et al (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091. https://doi.org/10.1039/C4TA00484A

    Article  CAS  Google Scholar 

  26. Zhou L, Fan L, Yi X et al (2018) Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano 12:10957–10967. https://doi.org/10.1021/acsnano.8b04609

    Article  CAS  PubMed  Google Scholar 

  27. Yu X, Zhang H, Wang Y et al (2022) Highly stretchable, ultra-soft, and fast self-healable conductive hydrogels based on polyaniline nanoparticles for sensitive flexible sensors. Adv Funct Mater 32:2204366. https://doi.org/10.1002/adfm.202204366

    Article  CAS  Google Scholar 

  28. Mao J, Zhang Z (2018) Polypyrrole as electrically conductive biomaterials: synthesis, biofunctionalization, potential applications and challenges. In: Chun HJ, Park CH, Kwon IK, Khang G (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Springer, Singapore, pp 347–370

    Chapter  Google Scholar 

  29. Zhao Y, Liu J, Hu Y et al (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595. https://doi.org/10.1002/adma.201203578

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Lian M (2017) Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J Power Sources 362:184–191. https://doi.org/10.1016/j.jpowsour.2017.07.042

    Article  CAS  Google Scholar 

  31. Ni T, Xu L, Sun Y et al (2015) Facile fabrication of reduced graphene oxide/polypyrrole composite hydrogels with excellent electrochemical performance and compression capacity. ACS Sustain Chem Eng 3:862–870. https://doi.org/10.1021/sc500828t

    Article  CAS  Google Scholar 

  32. Shi Y, Ma C, Peng L, Yu G (2015) Conductive “smart” hybrid hydrogels with pnipam and nanostructured conductive polymers. Adv Funct Mater 25:1219–1225. https://doi.org/10.1002/adfm.201404247

    Article  CAS  Google Scholar 

  33. Acik G, Karatavuk AO (2020) Synthesis, properties and biodegradability of cross-linked amphiphilic Poly(vinyl acrylate)-Poly(tert-butyl acrylate)s by photo-initiated radical polymerization. Eur Polym J 127:109602. https://doi.org/10.1016/j.eurpolymj.2020.109602

    Article  CAS  Google Scholar 

  34. Wang XY, Heng LP, Yang NL et al (2010) Preparation of polypyrrole/polyvinylalcohol (PPy/PVA) composite foam electrode material. Chin Chem Lett 21:884–887. https://doi.org/10.1016/j.cclet.2010.01.005

    Article  CAS  Google Scholar 

  35. Timofejeva A, D’Este M, Loca D (2017) Calcium phosphate/polyvinyl alcohol composite hydrogels: a review on the freeze-thawing synthesis approach and applications in regenerative medicine. Eur Polym J 95:547–565. https://doi.org/10.1016/j.eurpolymj.2017.08.048

    Article  CAS  Google Scholar 

  36. Nata IF, Wu T-M, Chen J-K, Lee C-K (2014) A chitin nanofibril reinforced multifunctional monolith poly(vinyl alcohol) cryogel. J Mater Chem B 2:4108–4113. https://doi.org/10.1039/C4TB00175C

    Article  CAS  PubMed  Google Scholar 

  37. Vigolo B, Poulin P, Lucas M et al (2002) Improved structure and properties of single-wall carbon nanotube spun fibers. Appl Phys Lett 81:1210–1212. https://doi.org/10.1063/1.1497706

    Article  CAS  Google Scholar 

  38. Vigolo B, Pénicaud A, Coulon C et al (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334. https://doi.org/10.1126/science.290.5495.1331

    Article  CAS  PubMed  Google Scholar 

  39. Kuchaiyaphum P, Rifai G, Yuuki W, Yamauchi T (2019) Hyaluronic acid-poly(vinyl alcohol) composite cryo-gel for biofunctional material application. Polym Adv Technol 30:94–100. https://doi.org/10.1002/pat.4447

    Article  CAS  Google Scholar 

  40. Tong X, Zheng J, Lu Y et al (2007) Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater Lett 61:1704–1706. https://doi.org/10.1016/j.matlet.2006.07.115

    Article  CAS  Google Scholar 

  41. Zhang Y, Jiang M, Zhang Y et al (2019) Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Mater Sci Eng C 104:110002. https://doi.org/10.1016/j.msec.2019.110002

    Article  CAS  Google Scholar 

  42. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J (2017) Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Edit 28:2220–2241. https://doi.org/10.1080/09205063.2017.1390383

    Article  CAS  Google Scholar 

  43. Tavakoli J, Mirzaei S, Tang Y (2018) Cost-effective double-layer hydrogel composites for wound dressing applications. Polymers 10:305. https://doi.org/10.3390/polym10030305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liao M, Liao H, Ye J et al (2019) Polyvinyl alcohol-stabilized liquid metal hydrogel for wearable transient epidermal sensors. ACS Appl Mater Interfaces 11:47358–47364. https://doi.org/10.1021/acsami.9b16675

    Article  CAS  PubMed  Google Scholar 

  45. Ma Y, Liu K, Lao L et al (2022) A stretchable, self-healing, okra polysaccharide-based hydrogel for fast-response and ultra-sensitive strain sensors. Int J Biol Macromole 205:491–499. https://doi.org/10.1016/j.ijbiomac.2022.02.065

    Article  CAS  Google Scholar 

  46. Chen G, Huang J, Gu J et al (2020) Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J Mater Chem A 8:6776–6784. https://doi.org/10.1039/D0TA00002G

    Article  CAS  Google Scholar 

  47. Zhou Z, Qian C, Yuan W (2021) Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos Sci Technol 203:108608. https://doi.org/10.1016/j.compscitech.2020.108608

    Article  CAS  Google Scholar 

  48. Kim GJ, Kim KO (2020) Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci Rep 10:18858. https://doi.org/10.1038/s41598-020-75906-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin B-S, Zhang S-W, Ren Q-Q et al (2017) Elastic soft hydrogel supercapacitor for energy storage. J Mater Chem A 5:24942–24950. https://doi.org/10.1039/C7TA08152A

    Article  CAS  Google Scholar 

  50. Wei D, Wang H, Zhu J et al (2020) Highly stretchable, fast self-healing, responsive conductive hydrogels for supercapacitor electrode and motion sensor. Macromol Mater Eng 305:2000018. https://doi.org/10.1002/mame.202000018

    Article  CAS  Google Scholar 

  51. Ren X, Yang M, Yang T et al (2021) Highly conductive PPy–PEDTO:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl Mater Interfaces 13:25374–25382. https://doi.org/10.1021/acsami.1c04432

    Article  CAS  PubMed  Google Scholar 

  52. Peng Z, Wang C, Zhang Z, Zhong W (2019) Synthesis and enhancement of electroactive biomass/polypyrrole hydrogels for high performance flexible all-solid-state supercapacitors. Adv Mater Interfaces 6:1901393. https://doi.org/10.1002/admi.201901393

    Article  CAS  Google Scholar 

  53. Hu S, Zhou L, Tu L et al (2019) Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 7:2389–2397. https://doi.org/10.1039/C9TB00173E

    Article  CAS  PubMed  Google Scholar 

  54. Hur J, Im K, Kim SW et al (2014) Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8:10066–10076. https://doi.org/10.1021/nn502704g

    Article  CAS  PubMed  Google Scholar 

  55. Adelnia H, Ensandoost R, Shebbrin Moonshi S et al (2022) Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. Eur Polym J 164:110974. https://doi.org/10.1016/j.eurpolymj.2021.110974

    Article  CAS  Google Scholar 

  56. Wei D, Zhu J, Luo L et al (2022) Ultra-stretchable, fast self-healing, conductive hydrogels for writing circuits and magnetic sensors. Polym Int 71:837–846. https://doi.org/10.1002/pi.6354

    Article  CAS  Google Scholar 

  57. Huang H, Chen R, Yang S et al (2020) Facile fabrication of MnO2-embedded 3-D porous polyaniline composite hydrogel for supercapacitor electrode with high loading. High Perform Polym 32:286–295. https://doi.org/10.1177/0954008319860893

    Article  CAS  Google Scholar 

  58. Zhang Z, Yu C, Peng Z, Zhong W (2021) Mechanically stiff and high-areal-performance integrated all-in-wood supercapacitors with electroactive biomass-based hydrogel. Cellulose 28:389–404. https://doi.org/10.1007/s10570-020-03509-8

    Article  CAS  Google Scholar 

  59. Wei D, Luo X, Xiong L et al (2019) High-performance poly(vinyl alcohol)–chitosan sponge modified with graphene oxide. Polym Bull 76:3059–3071. https://doi.org/10.1007/s00289-018-2537-1

    Article  CAS  Google Scholar 

  60. Zhang L, Wu Y, Xia Y, Jin L (2022) High capacitance of polypyrrole hydrogel electrode synthesized by polymerization of conjugated pyrrole salt. Electrochim Acta 412:140108. https://doi.org/10.1016/j.electacta.2022.140108

    Article  CAS  Google Scholar 

  61. Wang Y, Yao W, Huang H et al (2022) Polypyrrole-derived carbon nanotubes for potential application in electrochemical detection of dopamine. Solid State Sci 134:107038. https://doi.org/10.1016/j.solidstatesciences.2022.107038

    Article  CAS  Google Scholar 

  62. Samanta D, Meiser JL, Zare RN (2015) Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. Nanoscale 7:9497–9504. https://doi.org/10.1039/C5NR02196K

    Article  CAS  PubMed  Google Scholar 

  63. Valencia Castro LE, Pérez Martínez CJ, del Castillo CT et al (2015) Chemical polymerization of pyrrole in the presence of l-serine or l-glutamic acid: electrically controlled amoxicillin release from composite hydrogel. J Appl Polym Sci. https://doi.org/10.1002/app.41804

    Article  Google Scholar 

  64. Bo J, Luo X, Huang H et al (2018) Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J Power Sources 407:105–111. https://doi.org/10.1016/j.jpowsour.2018.10.064

    Article  CAS  Google Scholar 

  65. DeArmitt C, Armes SP (1993) Colloidal dispersions of surfactant-stabilized polypyrrole particles. Langmuir 9:652–654. https://doi.org/10.1021/la00027a007

    Article  CAS  Google Scholar 

  66. Mallakpour S, Azimi F (2019) Using sonochemistry for the production of poly(vinyl alcohol)/MWCNT–vitamin B1 nanocomposites: exploration of morphology, thermal and mechanical properties. New J Chem 43:7502–7510. https://doi.org/10.1039/C9NJ00116F

    Article  CAS  Google Scholar 

  67. Guo L, Ma W-B, Wang Y et al (2020) A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J Alloys Compd 843:155895. https://doi.org/10.1016/j.jallcom.2020.155895

    Article  CAS  Google Scholar 

  68. Zhang W, Ma J, Zhang W et al (2020) A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes. Nanoscale 12:6637–6643. https://doi.org/10.1039/D0NR01414A

    Article  CAS  PubMed  Google Scholar 

  69. Sun K, Feng E, Zhao G et al (2019) A single robust hydrogel film based integrated flexible supercapacitor. ACS Sustain Chem Eng 7:165–173. https://doi.org/10.1021/acssuschemeng.8b02728

    Article  CAS  Google Scholar 

  70. Tavakoli J, Gascooke J, Xie N et al (2019) Enlightening freeze–thaw process of physically cross-linked poly(vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl Polym Mater 1:1390–1398. https://doi.org/10.1021/acsapm.9b00173

    Article  CAS  Google Scholar 

  71. Orduño Rodríguez AM, Pérez Martínez CJ, del Castillo CT et al (2020) Nanocomposite hydrogel of poly(vinyl alcohol) and biocatalytically synthesized polypyrrole as potential system for controlled release of metoprolol. Polym Bull 77:1217–1232. https://doi.org/10.1007/s00289-019-02788-x

    Article  CAS  Google Scholar 

  72. Li W, Zeng X, Wang H et al (2015) Polyaniline-poly(styrene sulfonate) conducting hydrogels reinforced by supramolecular nanofibers and used as drug carriers with electric-driven release. Eur Polym J 66:513–519. https://doi.org/10.1016/j.eurpolymj.2015.03.020

    Article  CAS  Google Scholar 

  73. Cheng Y, Ren X, Duan L, Gao G (2020) A transparent and adhesive carboxymethyl cellulose/polypyrrole hydrogel electrode for flexible supercapacitors. J Mater Chem C 8:8234–8242. https://doi.org/10.1039/D0TC01039A

    Article  CAS  Google Scholar 

  74. Chen X, He M, Zhang X et al (2020) Metal-free and stretchable conductive hydrogels for high transparent conductive film and flexible strain sensor with high sensitivity. Macromolecular Chem Phys 221:2000054. https://doi.org/10.1002/macp.202000054

    Article  CAS  Google Scholar 

  75. Wang L, Hu S, Ullah MW et al (2020) Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydr Polym 249:116829. https://doi.org/10.1016/j.carbpol.2020.116829

    Article  CAS  PubMed  Google Scholar 

  76. Zhang E, Liu W, Liu X et al (2020) Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor. RSC Adv 10:11966–11970. https://doi.org/10.1039/D0RA01181A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayou Ji or Liang Li.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6191 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., She, X., Huang, H. et al. Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol. Polym. Bull. 81, 4107–4121 (2024). https://doi.org/10.1007/s00289-023-04903-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04903-5

Keywords

Navigation