Skip to main content

Advertisement

Log in

Enriched mechanical properties of Graphite nanoplatelets filled epoxy resin-plant fiber nanocomposites

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Epoxy resin, 15.0 wt.% of 5.0 wt.% N-[3-(Trimethoxysilyl) propyl]-ethylene diamine treated plant fibers (banana or coir fiber with length of 5–15 mm) and triethylene tetramine (TETA) mixed in (0.1 wt.%, 0.3 wt.% and 0.5 wt.% individual concentration) of graphite nanoplatelets (GnP) were stirred separately to form GnP filled epoxy-silanated banana fiber (ESBF) and GnP filled epoxy-silanated coir fiber (ESCF) nanocomposites, respectively. Hand layup method was used to pour these nanocomposites on the mold followed by curing for 24 h at room temperature and post-curing for 8 h at 50 °C. Not only the amino group of silane creates bonding of epoxy resin with plant fibers but also the amino group of TETA makes good interaction of GnP with the epoxy resin responsible for enriched mechanical properties. The highest tensile strength of 93 MPa, flexural strength of 318 MPa and impact strength of 224 J/m were recorded for 0.5 wt. % GnP filled ESCF nanocomposite as compared to 87 MPa, 222 MPa and 192 J/m for 0.5 wt.% GnP filled ESBF nanocomposite. The greater improvement in ESCF nanocomposites was due to lower cellulose content, higher lignin content and higher % fiber volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Verma CS, Chariar VM (2012) Development of layered laminate bamboo composite and their mechanical properties. Compos Part B: Eng 43(3):1063–1069

    Article  CAS  Google Scholar 

  2. Li Z, Young RJ, Wilson NR, Kinloch IA, Vallés C, Li Z (2016) Effect of the orientation of graphene-based nanoplatelets upon the young’s modulus of nanocomposites. Compos Sci Technol 123:125–133. https://doi.org/10.1016/j.compscitech.2015.12.005

    Article  CAS  Google Scholar 

  3. Manickam R, Ravi L, Manivannan M, Kumar NS, Pratap DV (2017) Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites. Mater Res 20(2):365–376

    Article  Google Scholar 

  4. Shalwan A, Yousif BF (2014) Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater Des 59:264–273

    Article  CAS  Google Scholar 

  5. Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38

    Article  CAS  Google Scholar 

  6. Sridharan V, Raja T, Muthukrishnan N (2016) Study of the effect of matrix, fibre treatment and graphene on delamination by drilling jute/epoxy nanohybrid composite. Arab J Sci Eng 41:1883–1894

    Article  Google Scholar 

  7. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos Part B: Eng 42(6):1648–1656

    Article  Google Scholar 

  8. Goulart SG, Souza DA, Machado JC, Hourston DJ (2000) Mechanical and thermal characterization of native Brazilian coir fiber. J Appl Polym Sci 76:1197–1206

    Article  Google Scholar 

  9. Obasi HC, Chaudhary AA, Ijaz K, Akhtar H, Malik MH (2017) Development of biocomposites from coir fiber and poly (caprolactone) by solvent casting technique. Polym Bull. https://doi.org/10.1007/s00289-017-2122-z

    Article  Google Scholar 

  10. Mishra S, Naik JB (2005) Effect of treatment of maleic anhydride on mechanical properties of natural fiber: polystyrene composites. Polym- Plastics Technol Eng 44:663–675

    Article  CAS  Google Scholar 

  11. Mishra S, Naik JB (1998) Absorption of steam and water at ambient temperature in wood polymer composites prepared from agro-waste and Novolac. J Appl Polym Sci 68:1417–1421

    Article  CAS  Google Scholar 

  12. Naik JB, Mishra S (2007) Esterification effect of maleic anhydride on swelling properties of natural fiber/high density polyethylene composites. J Appl Polym Sci 106:2571–2574

    Article  CAS  Google Scholar 

  13. Patil YP, Mishra S (2004) Effect of different anhydrides on mechanical properties of agro-wastes and novolac resin composites. Mol Crystal Liquid Crystal 418:101–111

    Article  ADS  Google Scholar 

  14. Suresh Kumar SM, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69

    Article  CAS  Google Scholar 

  15. Ibrahim MM, Dufresne A, El-Zawawy WK, Agblevor FA (2010) Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohyd Polymer 81:811–819

    Article  CAS  Google Scholar 

  16. Mishra S, Verma J (2016) Thermal decomposition kinetics of silane treated wood: PVC microcellular composites. Int J Plast Technol 20(1):93–105

    Article  CAS  Google Scholar 

  17. Sapuan SM, Leenie A, Harimi M, Beng YK (2006) Mechanical properties of woven banana fibre reinforced epoxy composites. Mater Des 27:689–693

    Article  CAS  Google Scholar 

  18. Venkateshwaran N, Perumal AE, Arunsundaranayagam D (2013) Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater Des 47:151–159

    Article  CAS  Google Scholar 

  19. Srisuwana S, Prasoetsopha N, Suppakarna N, Chumsamrong P (2014) The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin. Energy Procedia 56:19–25

    Article  Google Scholar 

  20. Bharadiya P, Mahajan C, Sharma AK, Mishra S (2019) Enriched mechanical, UV shielding and flame retarding properties of cotton fabric coated with graphite nano platelets filled polyaniline–gum arabic nanocomposites. Cellulose 26(13):8135–8151

    Article  CAS  Google Scholar 

  21. Carotenuto G, De Nicola S, Palomba M, Pullini D, Horsewell A, Hansen TW, Nicolais L (2012) Mechanical properties of low-density polyethylene filled by graphite nanoplatelets. Nanotechnology 23(48):485705

    Article  CAS  PubMed  Google Scholar 

  22. Alam SN, Kumar L, Sharma N (2015) Development of Cu-exfoliated graphite nanoplatelets (xGnP) metal matrix composite by powder metallurgy route. Graphene 4:91–111

    Article  CAS  Google Scholar 

  23. Nieto A, Lahiri D, Agarwal A (2012) Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50(11):4068–4077

    Article  CAS  Google Scholar 

  24. Sesta E, Drazica G, Genorioc B, Jermana I (2018) Graphene nanoplatelets as an anticorrosion additive for solar absorber coatings. Solar Energ Mater Solar Cells 176:19–29

    Article  Google Scholar 

  25. Bari P, Khan S, Njuguna J, Mishra S (2017) Elaboration of properties of graphene oxide reinforced epoxy nanocomposites. J Plast. Technol, Int. https://doi.org/10.1007/s12588-017-9180-9

    Book  Google Scholar 

  26. Bharadiya PS, Singh MK, Mishra S (2019) Influence of graphene oxide on mechanical and hydrophilic properties of epoxy/banana fiber composites. JOM 71(2):838–843

    Article  CAS  Google Scholar 

  27. Bharadiya PS, Mishra S (2019) Enriched mechanical properties of epoxy/coir fiber composites with graphene oxide. Res Develop Mater Sci 10(5):1–7

    Google Scholar 

  28. Khan S, Bari P, Mishra S (2019) Effect of chemically reduced graphene oxide on mechanical and thermal properties of epoxy nano composites. J Mater Sci Nanotechnol 7(1):1–9

    Google Scholar 

  29. Mishra RM, Ahamad A, Vijayvargiya R, Pandey KN, Mishra S, Rai JSP (2022) Effect of graphene on various properties of binary blend of polyetherimide/silicone rubber reinforced with halloysite nanotubes. Polym Bull. https://doi.org/10.1007/s00289-02204291-2

    Article  Google Scholar 

  30. Sumesh KR, Kanthavel K (2019) The influence of reinforcement, alkali treatment, compression pressure and temperature in fabrication of sisal/coir/epoxy composites:GRA and ANN prediction. Polym Bull. https://doi.org/10.1007/s00289-019-02988-5

    Article  Google Scholar 

  31. Jesuarockiam N, Mohammad J, Edi SZ, Mohamed THS, Ridwan Y (2019) Improved mechanical and moisture-resistant properties of woven hybrid epoxy composites by graphene nanoplatelets (GNP). Materials 12:1249–1266

    Article  Google Scholar 

  32. Alipour A, Lin R, Jayaraman K (2021) Effects of graphene network formation on microstructure and mechanical properties offlax/epoxy nanocomposites. J Market Res 15:4610–4622

    CAS  Google Scholar 

  33. It-Meng L, Hani Manssor A, Michael D (2020) Structural characterization of commercial graphite and graphene materials. J Nanotechnol Nanomater 1(1):23–30

    Google Scholar 

  34. Waiman CV, dell’Erba IE, Gomez CCA, M L, (2019) Hybrid mineral@silses- quioxane particles for water remediation: synthesis, characterization and application as adsorbent of As(V) and other water pollutants. J Mater Sci 53(18):12781–12794

    Article  ADS  Google Scholar 

  35. Bakria MKB, Jayamania E, Hamdan S (2017) Processing and characterization of banana fiber/epoxy composites: effect of alkaline treatment. Mater Today: Proceed 4:2871–2878

    Google Scholar 

  36. Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohyd Polym 92:1477–1483

    Article  CAS  Google Scholar 

  37. Mothe CG, de Miranda IC (2009) Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim 97:661–665

    Article  CAS  Google Scholar 

  38. Satyanarayana KG, Kulkarni AG, Rohatgi PK (1981) Structure and properties of coir fibres. Proc Indian Acad Sci (Engg Sci) 4(4):419–436

    Article  Google Scholar 

  39. Madueke CI, Mbah OM, Umunakwe R (2022) A review on the limitations of natural fibres and naturalfibre composites with emphasis on tensile strength using coir as a case study. Polym Bull. https://doi.org/10.1007/s00289-022-04241-y

    Article  Google Scholar 

  40. Nirupama P, Vijay Kumar A, Shishir S (2016) Hybridization effect of coir fiber on physicomechanical properties of polyethylene-banana/ coir fiber hybrid composites. Sci Eng Compos Mater 25(1):133–141

    Google Scholar 

Download references

Acknowledgements

P.S.B. is grateful to TEQIP-III MHRD, New Delhi for providing financial assistance to carry out this research work. S.M. is grateful to UGC New Delhi for awarding BSR Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1240 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadiya, P.S., Puri, R.G. & Mishra, S. Enriched mechanical properties of Graphite nanoplatelets filled epoxy resin-plant fiber nanocomposites. Polym. Bull. 81, 4275–4289 (2024). https://doi.org/10.1007/s00289-023-04898-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04898-z

Keywords

Navigation