Skip to main content

Advertisement

Log in

Hybrid mineral@silsesquioxane particles for water remediation: synthesis, characterization and application as adsorbent of As(V) and other water pollutants

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mineral-coated silsesquioxane particles of approximately 600 nm diameter were synthesized from the hydrolytic co-condensation of N-[3-trimethoxysilyl]-propyl]ethylenediamine (DAS) and tetraethyl orthosilicate (TEOS). The hybrid particles involve nanocomposites with a mineral core (montmorillonite—MMT—or goethite—Gt—nanoparticles) and coated with a silsesquioxane shell containing hydroxyl and amine groups. These particles were specially designed (exposing amino groups) to be highly efficient for the removal of As(V) and to enhance the adsorption properties of the minerals employed in this work. They were characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, zeta potential, dynamic light scattering and thermogravimetric techniques such as dynamic scanning calorimetry and thermogravimetric analysis. The characteristics found in the composite particles compared with pure organosilane DAS/TEOS or with the unmodified minerals proved the effectiveness of the silanization process. As result, hybrid nanocomposite materials were obtained, denoting versatility in their adsorption properties of different types of pollutants. Moreover, all synthesized particles showed a high arsenic retention capacity; experimental results demonstrated that superficial modification of the minerals is the preponderant factor that determines their adsorbent properties, favoring the versatility of these materials making them suitable for the removal of pollutants of diverse charge and nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  2. Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, von Brömssen M (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19:169–180

    Article  Google Scholar 

  3. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu CW, López D, Armienta MA, Guilherme LR, Cuevas AG, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35

    Article  Google Scholar 

  4. Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J Phys Chem 71:550–558

    Article  Google Scholar 

  5. Ilari R, Etcheverry M, Zenobi C, Zanini G (2014) Effect of the surfactant benzalkonium chloride in the sorption of paraquat and cadmium on montmorillonite. Int J Environ Health 7:70–82

    Article  Google Scholar 

  6. Ungureanu G, Santos S, Boaventura R, Botelho C (2015) Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manag 151:326–342

    Article  Google Scholar 

  7. Martinez-Vargas S, Martínez AI, Elias E, Hernández-Beteta EE, Mijangos-Ricardez OJ, Vázquez-Hipólito V, Patiño-Carachure C, Hernandez-Flores H, López-Luna J (2017) Arsenic adsorption on cobalt and manganese ferrite nanoparticles. J Mater Sci 52:6205–6215. https://doi.org/10.1007/s10853-017-0852-9

    Article  Google Scholar 

  8. Delorme F, Seron A, Gautier A, Crouzet C (2007) Comparison of the fluoride, arsenate and nitrate anions water depollution potential of a calcined quintinite, a layered double hydroxide compound. J Mater Sci 42:5799–5804. https://doi.org/10.1007/s10853-006-0752-x

    Article  Google Scholar 

  9. Musso TB, Parolo ME, Pettinari G, Francisca FM (2014) Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. J Environ Manag 146:50–58

    Article  Google Scholar 

  10. Chakraborty U, Singha T, Chianelli RR, Hansda C, Paul PK (2017) Organic-inorganic hybrid layer-by-layer electrostatic self-assembled film of cationic dye methylene blue and a clay mineral: spectroscopic and atomic force microscopic investigations. J Lumin 187:322–332

    Article  Google Scholar 

  11. Waiman CV, Arroyave JM, Chen H, Tan W, Avena MJ, Zanini GP (2016) The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competitive adsorption isotherms. Colloids Surf A Physicochem Eng Asp 498:121–127

    Article  Google Scholar 

  12. Wu H, Xie H, He G, Guan Y, Zhang Y (2016) Effects of the pH and anions on the adsorption of tetracycline on iron-montmorillonite. Appl Clay Sci 119:161–169

    Article  Google Scholar 

  13. Ogden SG, Lewis D, Shapter JG (2008) Silane functionalization of iron oxide nanoparticles. Proc SPIE Int Soc Opt Eng. https://doi.org/10.1117/12.810679

    Google Scholar 

  14. Gatti MN, Fernández LG, Sánchez MP, Parolo ME (2016) Aminopropyltrimethoxysilane- and aminopropyltrimethoxysilane-silver-modified montmorillonite for the removal of nitrate ions. Environ Technol 37:2658–2668

    Article  Google Scholar 

  15. Liu F, Niu F, Peng N, Su Y, Yang Y (2015) Synthesis, characterization, and application of Fe3O4@SiO2–NH2 nanoparticles. RSC Adv 5:18128–18136

    Article  Google Scholar 

  16. Safaei-Ghomi J, Nazemzadeh SH, Shahbazi-Alavi H (2016) Preparation and characterization of Fe3O4@SiO2/APTPOSS core–shell composite nanomagnetics as a novel family of reusable catalysts and their application in the one-pot synthesis of 1,3-thiazolidin-4-one derivatives. Appl Organomet Chem 30:911–916

    Article  Google Scholar 

  17. Kang JK, Park JA, Kim JH, Lee CG, Kim SB (2016) Surface functionalization of mesoporous silica MCM-41 with 3-aminopropyltrimethoxysilane for dye removal: kinetic, equilibrium, and thermodynamic studies. Desalin Water Treat 57:7066–7078

    Article  Google Scholar 

  18. Mahmoud ME, Saad EA, Soliman MA, Abdelwahab MS (2016) Synthesis and surface protection of nano zero valent iron (NZVI) with 3-aminopropyltrimethoxysilane for water remediation of cobalt and zinc and their radioactive isotopes. RSC Adv 6:66242–66251

    Article  Google Scholar 

  19. Yin JX, Wang XZ, Qi LH, Hao Y, Chen ZJ (2013) Preparation of amination magnetic nanoparticles and their application in Pb2+ adsorption property. Gongneng Cailiao/J Funct Mater 44:2511–2515

    Google Scholar 

  20. Lin Y, Chen H, Lin K, Chen B, Chiou C (2011) Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution. J Environ Sci 23:44–50

    Article  Google Scholar 

  21. Wu Z, Wu J, Xiang H, Chun MS, Lee K (2006) Organosilane-functionalized Fe3O4 composite particles as effective magnetic assisted adsorbents. Colloid Surf A 279:167–174

    Article  Google Scholar 

  22. Nodeh HR, Sereshti H, Gaikani H, Kamboh MA, Afsharsaveh Z (2017) Magnetic graphene coated inorganic-organic hybrid nanocomposite for enhanced reconcentration of selected pesticides in tomato and grape. J Chromatogr A 1509:26–34

    Article  Google Scholar 

  23. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  24. Meier LP, Kahr G (1999) Determination of the cation exchange capacity (cec) of clay minerals using the complexes of copper(II) ion with Triethylenetetramine and tetraethylenepentamine. Clays Clay Miner 47:380–388

    Article  Google Scholar 

  25. Sabnis RW (2010) Handbook of biological dyes and stains: synthesis and industrial applications. Wiley, Hoboken

    Book  Google Scholar 

  26. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  27. Lenoble V, Deluchat V, Serpaud B, Bollinger JC (2003) Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta 61:267–276

    Article  Google Scholar 

  28. Mori H, Lanzendörfer MG, Müller AHE (2004) Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups. Macromolecules 37:5228–5238

    Article  Google Scholar 

  29. Rubio F, Rubio J, Oteo JL (1998) A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc Lett 31:199–219

    Article  Google Scholar 

  30. Wang R, Baran G, Wunder SL (2000) Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers. Langmuir 16:6298–6305

    Article  Google Scholar 

  31. Tejedor-Tejedor MI, Anderson MA (1986) “In Situ” attenuated total reflection Fourier transform infrared studies of the goethite (α-FeOOH)-aqueous solution interface. Langmuir 2:203–210

    Article  Google Scholar 

  32. Launer PJ (1987) Infrared analysis of organosilicon compounds: spectra-structure correlations. In: Arkles B et al (eds) Reprinted from silicon compounds register and review. Petrarch Systems, Bristol, pp 211–214

    Google Scholar 

  33. McCarthy SA, Davies GL, Gun’ko YK (2012) Preparation of multifunctional nanoparticles and their assemblies. Nat Protoc 9:1677–1693

    Article  Google Scholar 

  34. Zhai SR, Zhang L, Zhai B, An QD (2012) Facile sol–gel synthesis of thiol-functionalized materials from TEOS-MPTMS-PMHS system. J Sol-Gel Sci Technol 61:23–33

    Article  Google Scholar 

  35. Gómez ML, Fasce DP, Williams RJJ, Previtali CM, Montejano HA (2010) Transparent polysilsesquioxane films obtained from bridged ureasil precursors: tunable photoluminescence emission in the visible region and filtering of UV-radiation. Macromol Mater Eng 295:1042–1048

    Article  Google Scholar 

  36. Gómez ML, Hoppe CE, Williams RJJ (2011) In situ generation of silver microstructures by thermal decomposition of silver n dodecanethiolate dispersed in an organic-inorganic hybrid coating. Mater Chem Phys 130:519–523

    Article  Google Scholar 

  37. Waiman CV, dell’Erba IE, Chesta CA, Gómez ML (2016) Hybrid films based on a bridged silsesquioxane doped with goethite and montmorillonite nanoparticles as sorbents of wastewater contaminants. J Nanomater. https://doi.org/10.1155/2016/6286247

    Google Scholar 

  38. Grewer T (1991) The influence of chemical structure on exothermic decomposition. Thermochim Acta 187:133–149

    Article  Google Scholar 

  39. Gualtieri AF, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral 84:895–904

    Article  Google Scholar 

  40. Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J Hazard Mater 186:1713–1719

    Article  Google Scholar 

  41. Song K, Sandi G (2001) Characterization of montmorillonite surfaces after modification by organosilane. Clays Clay Miner 49:119–125

    Article  Google Scholar 

  42. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440:36–42

    Article  Google Scholar 

  43. Chen C, Huang S, Chen M, Lu Q (2012) Synthesis and characterization of three kinds of bifunctionalized polyhedral oligomeric silsesquioxanes with the same cage structure. High Perform Polym 24:119–124

    Article  Google Scholar 

  44. Li J, Zhou H, Qian K, Xie X, Xue X, Yang Y, Wang Y (2017) Fluoride and iodine enrichment in groundwater of North China Plain: evidences from speciation analysis and geochemical modeling. Sci Total Environ 598:239–248

    Article  Google Scholar 

  45. Luengo C, Brigante M, Avena M (2007) Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. J Colloid Interface Sci 311:354–360

    Article  Google Scholar 

  46. Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619–1627

    Article  Google Scholar 

  47. Essington ME, Leeand J, Seo Y (2010) Adsorption of antibiotics by montmorillonite and kaolinite. Soil Sci Soc Am J 74:1577–1588

    Article  Google Scholar 

  48. Yu S, Wang X, Chen Z, Tan X, Wang H, Hu J, Alsaedi A, Alharbi NS, Guo W, Wang X (2016) Interaction mechanism of radionickel on Na-montmorillonite: influences of pH, electrolyte cations, humic acid and temperature. Chem Eng J 302:77–85

    Article  Google Scholar 

  49. Torres JJ, Montejano HA, Chesta CA (2012) Characterization of imprinted microbeads synthesized via minisuspension polymerization. Macromol Mater Eng 297:342–352

    Article  Google Scholar 

  50. Kumar E, Bhatnagar A, Hogland W, Marques M, Sillanpää M (2014) Interaction of anionic pollutants with Al-based adsorbents in aqueous media—a review. Chem Eng J 241:443–456

    Article  Google Scholar 

  51. Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320

    Article  Google Scholar 

  52. Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171:965–972

    Article  Google Scholar 

  53. Puccia V, Luengo C, Avena M (2009) Phosphate desorption kinetics from goethite as induced by arsenate. Colloids Surf A Physicochem Eng Asp 348:221–227

    Article  Google Scholar 

  54. Deng S, Yu G, Xie S, Yu Q, Huang J, Kuwaki Y, Iseki M (2008) Enhanced adsorption of arsenate on the aminated fibers: sorption behaviour and uptake mechanism. Langmuir 24:10961–10967

    Article  Google Scholar 

Download references

Acknowledgements

All authors are members of Consejo Nacional de Investigación Científica y Tecnológica (CONICET). C. V. Waiman thanks CONICET for postdoctoral fellowship. The financial support of Universidad Nacional de Río Cuarto, Universidad Nacional del Sur (PGI 24/Q051), Consejo Nacional de Investigación Científica y Tecnológica (PIP 11220100100284) and Agencia Nacional de Promoción Científica y Tecnológica (PICT 0115/2016 and PICT 1439/2013) from Argentina is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Chesta or María Lorena Gómez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waiman, C.V., dell’Erba, I.E., Chesta, C.A. et al. Hybrid mineral@silsesquioxane particles for water remediation: synthesis, characterization and application as adsorbent of As(V) and other water pollutants. J Mater Sci 53, 12781–12794 (2018). https://doi.org/10.1007/s10853-018-2529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2529-4

Keywords

Navigation