Skip to main content
Log in

Linear and nonlinear optical properties of FeCl3/PVA composite flexible films for optoelectronic applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of FeCl3 loading in the poly (vinyl alcohol) (PVA) matrix can design composite films with improvement in the structural and optical properties. PVA/FeCl3 composite films with different contents of FeCl3 (0, 2.5, 5, 10, and 15 wt.%) were prepared by casting method. FTIR spectrophotometer and XRD pattern were utilized to examine the variation in the PCs’ structural characteristics and the structural composition, respectively. FTIR spectra of PVA/FeCl3 exhibited peaks at similar wave numbers to pure PVA, indicating that FeCl3 has no impact on the PVA structural properties, while XRD showed the semi-crystalline nature of PVA. The UV–visible–NIR spectra measurements were used to analyze the optical performance. The absorbance, transmittance, direct energy gap, Urbach energy, extinction coefficient, and refractive index were studied. The direct band gap reduced with increasing FeCl3 in PVA matrix. Wemple and DiDomenico’s model was used to determine the fundamental parameters, including single-oscillator energy (Eo), dispersion energy (Ed), and static refractive index (no). The third-order nonlinear optical susceptibility \(\chi^{\left( 3 \right)}\), nonlinear refractive index (n2), electrical susceptibility, and relative permittivity were increased with increasing FeCl3 in PVA matrix. So, PVA/FeCl3 composite polymer films show promise for flexible optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Huang T, Hao Z, Gong H, Liu Z, Xiao S, Li S, Zhai Y, You S, Wang Q, Qin J (2008) Third-order nonlinear optical properties of a new copper coordination compound: a promising candidate for all-optical switching. Chem Phys Lett 451:213–217

    CAS  Google Scholar 

  2. Zhang Y, Wada T, Wang L, Sasabe H (1997) Main-chain polymers with nonlinear optical chromophores as a slipped shoulder-to-shoulder arrangement. Polym J 29(8):685–692

    CAS  Google Scholar 

  3. Abomostafa HM (2020) Linear and nonlinear optical properties of innovative synthesis of nickel nanoparticles in polystyrene matrix as a new optical system. J Mol Struct 1225:129126

    Google Scholar 

  4. Peddireddy KR, Clairmont R, Neill P, McGorty R, Robertson-Anderson RM (2022) Optical tweezers-integrating-differential-dynamic-microscopy maps the spatiotemporal propagation of nonlinear strains in polymer blends and composites. Nat Commun 13:1–16

    Google Scholar 

  5. Alotaibi BM, Al-Yousef HA, Alsaif NA, Atta A (2022) Oxygen beam induced modifications on the structural characteristics and physico-chemical properties of PANI/lead sulfide composite films. Inorg Chem Commun 144:109904

    CAS  Google Scholar 

  6. Abomostafa HM, Abulyazied DE (2021) Linear and nonlinear optical response of nickel core-shell @ silica/PMMA nanocomposite film for flexible optoelectronic applications. J Inorg Organomet Polym Mater 31:2902–2914

    CAS  Google Scholar 

  7. Wassel AR, Abdelhameed RM, Nasralla NHS, Abomostafa H (2022) Impact of Sm2O3 on the morphological, optical, magnetic, and pesticide adsorption of Co3O4/PANI hybrid nanocomposites. ECS J Solid State Sci Technol 11:083009

    Google Scholar 

  8. Shaalan NM, Hanafy TA, Rashad M (2021) Dual optical properties of NiO-doped PVA nanocomposite films. Opt Mater 119:111325

    CAS  Google Scholar 

  9. Sathish S, Chandar Shekar B, Bhavyasree BT (2013) Nano Composite PVA–TiO2 thin films for OTFTs. Adv Mater Res 678:335–342

    Google Scholar 

  10. Sugumaran S, Bellan CS (2014) Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: optical and dielectric properties. Optik 125:5128–5133

    CAS  Google Scholar 

  11. Praveena D, Ravindrachary V, Bhajantri RF, Ismayil (2016) Dopant-induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polym Compos 37:987–997

    CAS  Google Scholar 

  12. El-Sayed AH, Hossien Y, Hamad MA (2019) Tailoring optical transmittance of polyvinyl alcohol by FeCl3-doping for photovoltaic application. Eur Phys J Plus 134:415

    Google Scholar 

  13. Darwesh AHA, Aziz SB, Hussen SA (2022) Insights into optical band gap identification in polymer composite films based on PVA with enhanced optical properties: structural and optical characteristics. Opt Mater 133:113007

    CAS  Google Scholar 

  14. Aziz SB, Nofal MM, Ghareeb HO, Dannoun EMA, Hussen SA, Hadi JM, Ahmed KK, Hussein AM (2021) Characteristics of poly(vinyl alcohol) (PVA) based composites integrated with green synthesized Al3+-metal complex: structural, optical, and localized density of state analysis. Polymers 13:1316

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Banerjee M, Jain A, Mukherjee GS (2019) Microstructural and optical properties of polyvinyl alcohol/manganese chloride composite film. Polym Compos. https://doi.org/10.1002/pc.25017

    Article  Google Scholar 

  16. Soliman TS, Zaki MF, Hessien MM, Elkalashy ShI (2021) The structure and optical properties of PVA–BaTiO3 nanocomposite films. Opt Mater 111:110648

    CAS  Google Scholar 

  17. Elhosiny Ali H, Algarni H, Khairy Y (2020) Influence of cobalt-metal concentration on the microstructure and optical limiting properties of PVA. Opt Mater 108:110212

    Google Scholar 

  18. Badawi A, Alsufyani SJ, Alharthi SS, Althobaiti MG, Alkathiri AA, Almurayshid M, Alharbi AN (2022) Impact of gamma irradiation on the structural, linear and nonlinear optical properties of lead oxide incorporated PVA/graphene blend for shielding applications. Opt Mater 127:112244

    CAS  Google Scholar 

  19. Soliman TS, Vshivkov SA, Elkalash ShI (2020) Structural, linear and nonlinear optical properties of Ni nanoparticles—polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt Mater 107:110037

    CAS  Google Scholar 

  20. Yahiaa IS, Mohammed MI, Nawar AM (2019) Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications. Phys B Condens Matter 556:48–60

    Google Scholar 

  21. Cotton FA, Wilkinson G (1962) Advanced inorganic chemistry. Wiley, London

    Google Scholar 

  22. Abdelrazek EM (2007) Influence of FeCl3 filler on the structure and physical properties of polyethyl-methacrylate films. Physica B 400:26–32

    CAS  Google Scholar 

  23. Latif DMA et al (2018) Effects of FeCl3 additives on optical parameters of PVA. J Phys Conf Ser 1003:012108

    Google Scholar 

  24. Hanafy TA (2012) Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films. J Appl Phys 112:1–10

    Google Scholar 

  25. Mansur HS, Oréfce RL, Mansur AAP (2004) Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45(21):7193–7202

    CAS  Google Scholar 

  26. Elkalashy O, Sheha E (2018) Attempt to tune the dielectric and optical properties in PVA/ZnO composite using tetra ethylene glycol dimethyl ether for light emitting devices. Appl Phys A 124(8):549

    Google Scholar 

  27. Hamdalla TA, Hanafy TA, Bekheet AE (2015) Infuence of erbium ions on the optical and structural properties of polyvinyl alcohol. J Spectrosc. https://doi.org/10.1155/2015/204867

    Article  Google Scholar 

  28. Hanafy TA, Zedan IT, Bekheet AE (2018) Investigation of structural, optical, and dielectric properties of pva-ki for temperature sensor applications. Surf Rev Lett 26(4):1950054

    Google Scholar 

  29. Madeja AS, Welna M, Zyrnicki W (2013) Multi-element analysis, bioavailability and fractionation of herbal tea products. J Braz Chem Soc 24:777–787

    Google Scholar 

  30. Ali FM, Kershi RM, Sayed MA, AbouDeif YM (2018) Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Physica B 538:160–166

    CAS  Google Scholar 

  31. Chahal RP, Mahendia S, Tomar AK, Kumar S (2012) c-Irradiated PVA/Ag nanocomposite films: materials for optical applications. J Alloy Compd 538:212–219

    CAS  Google Scholar 

  32. Bhargav PB, Mohan VM, Sharma AK, Rao VN (2009) Investigations on electrical properties of (PVA: NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165–171

    Google Scholar 

  33. Alghamdi HM, Rajeh A (2022) Synthesis of CoFe2O4/MWCNTs nanohybrid and its effect on the optical, thermal, and conductivity of PVA/CMC composite as an application in electrochemical devices. J Inorg Organomet Polym Mater 32:1935–1949

    CAS  Google Scholar 

  34. Abomostafa HM, Abouhaswa AS, Rabiea EA (2023) Preparation of lead hexaferrite filled PVA–PVP nanocomposite and a study of its structural features, optical and dielectric properties. Phys Scr 98:025803

    Google Scholar 

  35. Choudhary S (2018) Characterization of amorphous silica nanofller efect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their fexible nanodielectric applications. J Mater Sci Mater Electron 29:10517–10534

    CAS  Google Scholar 

  36. Mallakpour S, Nazari HY (2018) The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason Sonochem 41:1–10

    CAS  PubMed  Google Scholar 

  37. Hannoyer B, Lenglet M, Corles R (1992) Spectroscopic evidence of octahedral iron (III) in soda-lime silicate glasses. J Non Cryst Solids 151:209

    CAS  Google Scholar 

  38. Davis EA, Mott NF (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 22(179):0903–0922

    CAS  Google Scholar 

  39. Abdullah OGh, Aziz SB, Rasheed MA (2016) Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys 6:1103

    Google Scholar 

  40. Yakuphanoglua F, Barımb G, Erolc I (2007) The effect of FeCl3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films. Physica B 391:136–140

    Google Scholar 

  41. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324

    CAS  Google Scholar 

  42. El Komy GM, Abomostafa H, Azab AA, Selim MM (2019) Innovative synthesis of nickel nanoparticles in polystyrene matrix with enhanced optical and magnetic properties. J Inorg Organomet Polym Mater 29:1983–1994

    Google Scholar 

  43. Didomenico M, Wemple SH (1969) Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects. J Appl Phys 40:720

    CAS  Google Scholar 

  44. Wemple SH, Didomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3:1338

    Google Scholar 

  45. Wemple SH (1973) Refractive-index behavior of amorphous semiconductors and glasses. Phys Rev B 7:3767

    CAS  Google Scholar 

  46. Mansour AF, Mansour SF, Abdo MA (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. ISRO J Appl Phys 7:60–69

    Google Scholar 

  47. Mohammed MI (2018) Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J Mol Struct 1169:9–17

    CAS  Google Scholar 

  48. Frumar M, Jedelsky J, Frumarova B, Wagner T, Hrdlicka M (2003) Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J Non Cryst Solids 326:399–404

    Google Scholar 

  49. Alrowaili ZA, Taha TA, El-Nasser KS, Donya H (2021) Significant enhanced optical parameters of PVA-Y2O3 polymer nanocomposite films. J Inorg Organomet Polym Mater 31(7):3101–3110

    CAS  Google Scholar 

  50. Darwish AAA, Aboraia AM, Alharbi SR, El Shafey AM, Mohammedsaleh ZM, Alrafai HA, Hanafy TA, Omar AMA (2021) Tailoring the structural and optical features of PtCl4@ PVA polymeric composite films for optical applications. Opt Mater 120:111416

    CAS  Google Scholar 

  51. Tichý L, Ticha H, Nagels P, Callaerts R, Mertens R, Vlcek M (1999) Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater Lett 39:122–128

    Google Scholar 

  52. Hanna D (1988) Handbook of laser science and technology. Taylor & Francis, Milton Park

    Google Scholar 

  53. Stepanov AL (2019) Optical properties of polymer nanocomposites with functionalized nanoparticles. In: Pielichowski K, Majka TM (eds) Polymer composites with functionalized nanoparticles. Elsevier, Amsterdam, pp 325–355

    Google Scholar 

  54. Abuelwafa AA, Abd El-sadek MS, Yahia IS (2018) Linear and nonlinear optical properties of nano-spherical perylenetetracarboxylic dianhydride/ITO as a new optical system. Optic Laser Technol 108:241–246

    CAS  Google Scholar 

  55. Yahia IS, Zahran HY, Alamri FH (2017) Linear and nonlinear optics of pyronin Y/flexible polymer substrate for flexible organic technology: new optical approach. Optic Laser Technol 95:124–132

    CAS  Google Scholar 

  56. Abutaliba MM, Yahia IS (2019) Analysis of the linear/nonlinear optical properties of basic fuchsin dye/FTO films: controlling the laser power of red/green lasers. Optik 179:145–153

    Google Scholar 

  57. Gupta V, Mansingh AI (1996) Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J Appl Phys 80:1063

    CAS  Google Scholar 

  58. Braslavsky SE (2007) Glossary of terms used in photochemistry. Pure Appl Chem 79:293

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ASA and HMA performed all the experimental work (sample preparation and its characterization), validation, and formal analysis and prepared manuscript.

Corresponding author

Correspondence to A. S. Abouhaswa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouhaswa, A.S., Abomostafa, H.M. Linear and nonlinear optical properties of FeCl3/PVA composite flexible films for optoelectronic applications. Polym. Bull. 81, 3127–3147 (2024). https://doi.org/10.1007/s00289-023-04867-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04867-6

Keywords

Navigation