Skip to main content
Log in

Development of galangin-loaded nano-sized polyelectrolyte liposome: optimization and characterization

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Galangin is a natural flavonol with high antioxidant properties and has a wide range characteristics of biological activity spectrum. Galangin has low solubility, permeability, and bioavailability, limiting its therapeutic use like many flavonoids. In this study, nano-sized polyelectrolyte liposomes were developed and characterized to overcome the properties that limit the use of galangin. The various parameters (phospholipid/solvent ratio, cholesterol/solvent ratio, time and galangin/solvent ratio) were optimized with a response surface methodology-central composite design to develop liposomes with maximum encapsulation efficiency using the thin-film hydration method. An optimum liposome formulation was developed with 93.77 ± 0.05% encapsulation efficiency, a spherical large unilamellar vesicle with a size of 485.5 ± 128.41 nm, and a zeta potential of  − 48 ± 7 mV. The optimum liposome formulation was coated with polyelectrolyte biopolymer chitosan (CH) and gum arabic (GUA) using the layer-by-layer deposition method to improve its stability and drug release profile. The CH-liposome has a size of 208.05 ± 73.04 nm and a zeta potential of + 40 ± 5 mV. The GUA-CH-liposome has a size of 266.60 ± 8.49 nm and a zeta potential of  − 6 mV. Fourier transform infrared spectroscopy analysis showed that galangin was encapsulated without disturbing the liposome structure and the polyelectrolyte coated the surface with electrostatic interaction. At the end of the in vitro release study, GUA-CH-liposome released 23.84% of galangin. Regarding stability, drug loading capacity of GUA-CH-liposome, which was 93.77 ± 0.05% on day 0, changed to 92.72 ± 0.51% at + 4 °C, 93.09 ± 0.01% at room temperature and 93.15 ± 0.01% at  − 24 °C on day 28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang X, Wang P, Yang C et al (2021) Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production. Front Pharmacol 12:646628. https://doi.org/10.3389/fphar.2021.646628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fang D, Xiong Z, Xu J et al (2019) Chemopreventive mechanisms of galangin against hepatocellular carcinoma: a review. Biomed Pharmacother 109:2054–2206. https://doi.org/10.1016/j.biopha.2018.09.154

    Article  CAS  PubMed  Google Scholar 

  3. Abubakar IB, Malami I, Yahaya Y, Sule SM (2018) A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. J Ethnopharmacol 224:45–62. https://doi.org/10.1016/j.jep.2018.05.027

    Article  CAS  PubMed  Google Scholar 

  4. Jeong D, Kim HK, Jeong JP et al (2016) Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug. Cellulose 23:2609–2625. https://doi.org/10.1007/s10570-016-0975-1

    Article  CAS  Google Scholar 

  5. Subramani T, Ganapathyswamy H (2020) An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J Food Sci Technol 57:3545–3555. https://doi.org/10.1007/s13197-020-04360-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Witika BA, Makoni PA, Matafwali SK et al (2021) Enhancement of biological and pharmacological properties of an encapsulated polyphenol: curcumin. Molecules 26:4244. https://doi.org/10.3390/molecules26144244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saifullah M, Shishir MRI, Ferdowsi R et al (2019) Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends Food Sci Technol 86:230–251. https://doi.org/10.1016/j.tifs.2019.02.030

    Article  CAS  Google Scholar 

  8. Shishir MRI, Xie L, Sun C et al (2018) Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 78:34–60. https://doi.org/10.1016/j.tifs.2018.05.018

    Article  CAS  Google Scholar 

  9. Witika BA, Makoni PA, Matafwali SK et al (2020) Biocompatibility of biomaterials for nanoencapsulation: current approaches. Nanomaterials 10:1–40. https://doi.org/10.3390/nano10091649

    Article  CAS  Google Scholar 

  10. Liu G, Hou S, Tong P, Li J (2022) Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Crit Rev Anal Chem 52:392–412. https://doi.org/10.1080/10408347.2020.1805293

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen TA, Tang QD, Doan DCT, Dang MC (2016) Micro and nano liposome vesicles containing curcumin for a drug delivery system. Adv Nat Sci Nanosci and Nanotechnol 7:035003. https://doi.org/10.1088/2043-6262/7/3/035003

    Article  CAS  Google Scholar 

  12. Balakrishnan KRRP, Gopi S (2022) Systematic review on activity of liposomal encapsulated antioxidant, antibiotics, and antiviral agents. J Liposome Res 8:1–14. https://doi.org/10.1080/08982104.2021.2024568

    Article  CAS  Google Scholar 

  13. Akhavan S, Assadpour E, Katouzian I, Jafari SM (2018) Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci Technol 74:132–146. https://doi.org/10.1016/j.tifs.2018.02.001

    Article  CAS  Google Scholar 

  14. Su C, Liu Y, He Y, Gu J (2018) Analytical methods for investigating in vivo fate of nanoliposomes: a review. J Pharm Anal 8:219–225. https://doi.org/10.1016/j.jpha.2018.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Apolinário AC, Hauschke L, Nunes JR, Lopes LB (2021) Lipid nanovesicles for biomedical applications: ‘what is in a name’? Prog Lipid Res 82:101096. https://doi.org/10.1016/j.plipres.2021.101096

    Article  CAS  PubMed  Google Scholar 

  16. Aguilar-Pérez KM, Avilés-Castrillo JI, Medina DI et al (2020) Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Front Bioeng Biotechnol 8:579536. https://doi.org/10.3389/fbioe.2020.579536

    Article  PubMed  PubMed Central  Google Scholar 

  17. Trucillo P, Campardelli R, Reverchon E (2020) Liposomes: From bangham to supercritical fluids. Processes 8:1022. https://doi.org/10.3390/pr8091022

    Article  Google Scholar 

  18. Enaru B, Socaci S, Farcas A et al (2021) Novel delivery systems of polyphenols and their potential health benefits. Pharmaceuticals 14:946. https://doi.org/10.3390/ph14100946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan C, Wang J, Sun B (2021) Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 48:107727. https://doi.org/10.1016/j.biotechadv.2021.107727

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Zhai J, Dyett B et al (2021) Effect of gum arabic or sodium alginate incorporation on the physicochemical and curcumin retention properties of liposomes. LWT 139:110571. https://doi.org/10.1016/j.lwt.2020.110571

    Article  CAS  Google Scholar 

  21. Ahmed KS, Hussein SA, Ali AH et al (2019) Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target 27:742–761. https://doi.org/10.1080/1061186x.2018.1527337

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Dutta J, Dutta PK, Koh J (2020) A systematic study on chitosan-liposome based systems for biomedical applications. Int J Biol Macromol 160:470–481. https://doi.org/10.1016/j.ijbiomac.2020.05.192

    Article  CAS  PubMed  Google Scholar 

  23. Sabry S, El Hakim Ramadan A, Abd elghany M et al (2021) Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats. J Drug Deliv Sci Technol 61:102163. https://doi.org/10.1016/j.jddst.2020.102163

    Article  CAS  Google Scholar 

  24. Patil S, Ujalambkar V, Rathore A et al (2019) Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomed Pharmacother 112:108691. https://doi.org/10.1016/j.biopha.2019.108691

    Article  CAS  PubMed  Google Scholar 

  25. Hajipour H, Nouri M, Ghorbani M et al (2021) Targeted nanostructured lipid carrier containing galangin as a promising adjuvant for improving anticancer effects of chemotherapeutic agents. Naunyn-Schmiedeberg’s Arch Pharmacol 394:2353–2362. https://doi.org/10.21203/rs.3.rs-600166/v1

    Article  CAS  Google Scholar 

  26. Zhu J, Wang Q, Li H et al (2018) Galangin-loaded, liver targeting liposomes: Optimization and hepatoprotective efficacy. J Drug Deliv Sci Technol 46:339–347. https://doi.org/10.1016/j.jddst.2018.05.034

    Article  CAS  Google Scholar 

  27. Li Y, Guo M, Lin Z et al (2018) Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R Soc Open Sci 5:180509. https://doi.org/10.1098/rsos.180509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao H, Lu H, Zhang J et al (2019) Preparation of prolonged-circulating galangin-loaded liposomes and evaluation of antitumor efficacy in vitro and pharmacokinetics in vivo. J Nanomater. https://doi.org/10.1155/2019/7236895

    Article  Google Scholar 

  29. Li CY, Cheng SE, Wang SH et al (2021) The anti-inflammatory effects of the bioactive compounds isolated from Alpinia officinarum Hance mediated by the suppression of NF-kappaB and MAPK signaling. Chin J Physiol 64:32–42. https://doi.org/10.4103/CJP.CJP_81_20

    Article  CAS  PubMed  Google Scholar 

  30. Karkar B, Şahin S (2022) Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. Eur Food Res Technol 248:219–241. https://doi.org/10.1007/s00217-021-03875-y

    Article  CAS  Google Scholar 

  31. Şahin S, Nasir NTBM, Erken I et al (2019) Antioxidant composite films with chitosan and carotenoid extract from Chlorella vulgaris: Optimization of ultrasonic-assisted extraction of carotenoids and surface characterization of chitosan films. Mater Res Express 6:095404. https://doi.org/10.1088/2053-1591/ab2def

    Article  CAS  Google Scholar 

  32. Cui T, Jia A, Yao M et al (2021) Characterization and caco-2 cell transport assay of chito-oligosaccharides nano-liposomes based on layer-by-layer coated. Molecules 26:4144. https://doi.org/10.3390/molecules26144144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Men W, Zhu P, Dong S et al (2020) Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv 27:180–190. https://doi.org/10.1080/10717544.2019.1709922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiong Y, Guo D, Wang L et al (2009) Development of nobiliside A loaded liposomal formulation using response surface methodology. Int J Pharm 371:197–203. https://doi.org/10.1016/j.ijpharm.2008.12.031

    Article  CAS  PubMed  Google Scholar 

  35. Hashemi SH, Montazer M, Naghdi N, Toliyat T (2018) Formulation and characterization of alprazolam-loaded nanoliposomes: screening of process variables and optimizing characteristics using RSM. Drug Dev Ind Pharm 44:296–305. https://doi.org/10.1080/03639045.2017.1391834

    Article  CAS  PubMed  Google Scholar 

  36. Refaat H, Mady FM, Sarhan HA et al (2021) Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int J Pharm 592:120028. https://doi.org/10.1016/j.ijpharm.2020.120028

    Article  CAS  PubMed  Google Scholar 

  37. Deniz A, Sade A, Severcan F et al (2010) Celecoxib-loaded liposomes: Effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep 30:365–373. https://doi.org/10.1042/BSR20090104

    Article  CAS  PubMed  Google Scholar 

  38. Maja L, Željko K, Mateja P (2020) Sustainable technologies for liposome preparation. J Supercrit Fluids 165:104984. https://doi.org/10.1016/j.supflu.2020.104984

    Article  CAS  Google Scholar 

  39. Rasmussen MK, Pedersen JN, Marie R (2020) Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun 11:2337. https://doi.org/10.1038/s41467-020-15889-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang DY, van der Mei HC, Ren Y et al (2020) Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem 7:872. https://doi.org/10.3389/fchem.2019.00872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barbosa JAC, Abdelsadig MSE, Conway BR, Merchant HA (2019) Using zeta potential to study the ionisation behaviour of polymers employed in modified-release dosage forms and estimating their pKa. Int J Pharm X 1:100024. https://doi.org/10.1016/j.ijpx.2019.100024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang Y (2021) Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 131:2626–2639. https://doi.org/10.1111/jam.15053

    Article  CAS  PubMed  Google Scholar 

  43. Danaei M, Dehghankhold M, Ataei S et al (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57. https://doi.org/10.3390/pharmaceutics10020057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wen MM, Farid RM, Kassem AA (2014) Nano-proniosomes enhancing the transdermal delivery of mefenamic acid. J Liposome Res 24:280–289. https://doi.org/10.3109/08982104.2014.911313

    Article  CAS  PubMed  Google Scholar 

  45. Perez-Ruiz AG, Ganem A, Olivares-Corichi IM, García-Sánchez JR (2018) Lecithin-chitosan-TPGS nanoparticles as nanocarriers of (-)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Adv 8:34773–34782. https://doi.org/10.1039/c8ra06327c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tavares L, Noreña CPZ (2020) Encapsulation of ginger essential oil using complex coacervation method: coacervate formation, rheological property, and physicochemical characterization. Food Bioproc Tech 13:1405–1420. https://doi.org/10.1007/s11947-020-02480-3

    Article  CAS  Google Scholar 

  47. Hernández-Fernández MÁ, García-Pinilla S, Ocampo-Salinas OI et al (2020) Microencapsulation of vanilla oleoresin (V. Planifolia andrews) by complex coacervation and spray drying: Physicochemical and microstructural characterization. Foods 9:1375. https://doi.org/10.3390/foods9101375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rajabi H, Jafari SM, Rajabzadeh G et al (2019) Chitosan-gum Arabic complex nanocarriers for encapsulation of saffron bioactive components. Colloids Surf A Physicochem Eng Asp 578:123644. https://doi.org/10.1016/j.colsurfa.2019.123644

    Article  CAS  Google Scholar 

  49. Zhang T, Su M, Jiang X et al (2019) Transepithelial transport route and liposome encapsulation of milk-derived ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro. J Agric Food Chem 67:5544–5551. https://doi.org/10.1021/acs.jafc.9b00397

    Article  CAS  PubMed  Google Scholar 

  50. Jeon S, Yoo CY, Park SN (2015) Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces 129:7–14. https://doi.org/10.1016/j.colsurfb.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  51. Li N, Zhuang C, Wang M et al (2009) Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 379:131–138. https://doi.org/10.1016/j.ijpharm.2009.06.020

    Article  CAS  PubMed  Google Scholar 

  52. Hermal F, Frisch B, Specht A et al (2020) Development and characterization of layer-by-layer coated liposomes to increase their resistance in biological media. Int J Pharm 586:119568. https://doi.org/10.1016/j.ijpharm.2020.119568

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliha Şahin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkar, B., Patır, İ. & Şahin, S. Development of galangin-loaded nano-sized polyelectrolyte liposome: optimization and characterization. Polym. Bull. 81, 2847–2867 (2024). https://doi.org/10.1007/s00289-023-04826-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04826-1

Keywords

Navigation