Skip to main content

Advertisement

Log in

Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In this study, self-assembled phytosomal soft nanoparticles encapsulated with phospholipid complex (MPLC SNPs) using a combination of solvent evaporation and nanoprecipitation method were developed to enhance the biopharmaceutical and antioxidant potential of MGN. The mangiferin-Phospholipon® 90H complex (MPLC) was produced by the solvent evaporation method and optimized using central composite design (CCD). The optimized MPLC was converted into MPLC SNPs using the nanoprecipitation method. The physicochemical and functional characterization of MPLC and MPLC SNPs was carried out by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffractometer (PXRD), proton nuclear magnetic resonance (1H-NMR), solubility, in vitro dissolution, oral bioavailability, and in vivo antioxidant studies. A CCD formed stable MPLC with the optimal values of 1:1.76, 50.55 °C, and 2.02 h, respectively. Characterization studies supported the formation of a complex. MPLC and MPLC SNPs both enhanced the aqueous solubility (~ 32-fold and ~ 39-fold), dissolution rate around ~ 98% via biphasic release pattern, and permeation rate of ~ 97%, respectively, compared with MGN and MGN SNPs. Liver function tests and in vivo antioxidant studies exhibited that MPLC SNPs significantly preserved the CCl4-intoxicated liver marker and antioxidant marker enzymes, compared with MGN SNPs. The oral bioavailability of MPLC SNPs was increased appreciably up to ~ 10-fold by increasing the main pharmacokinetic parameters such as Cmax, Tmax, and AUC. Thus, MPLC SNPs could be engaged as a nanovesicle delivery system for improving the biopharmaceutical and antioxidant potential of MGN.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yoshimi N, Matsunaga K, Katayama M, Yamada Y, Kuno T, Qiao Z, et al. The inhibitory effects of mangiferin, a naturally occurring glucosyl xanthone, in bowel carcinogenesis of male F344 rats. Cancer Lett. 2001;163(2):163–70. https://doi.org/10.1016/s0304-3835(00)00678-9.

    Article  CAS  PubMed  Google Scholar 

  2. Yoshikawa M, Ninomiya K, Shimoda H, Nishida N, Matsuda H. Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol Pharm Bull. 2002;25:72–6. https://doi.org/10.1248/bpb.25.72.

    Article  CAS  PubMed  Google Scholar 

  3. Das J, Ghosh J, Roy A, Sil PC. Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2-NFκB pathways. Toxicol Appl Pharmacol. 2012;260:35–47. https://doi.org/10.1016/j.taap.2012.01.015.

    Article  CAS  PubMed  Google Scholar 

  4. Imran M, Arshad MS, Butt MS, Kwon JH, Arshad MU, Sultan MT. Mangiferin: a natural miracle bioactive compound against lifestyle-related disorders. Lipids Health Dis. 2017;16:1–17. https://doi.org/10.1186/s12944-017-0449-y.

    Article  CAS  Google Scholar 

  5. Moreira RRD, Carlos IZ, Vilegas W. Release of intermediate reactive hydrogen peroxide by macrophage cells activated by natural products. Biol Pharm Bull. 2002;24:201–4. https://doi.org/10.1248/bpb.24.201.

    Article  Google Scholar 

  6. Ghosh J, Das J, Manna P, Sil PC. The protective role of arjunolic acid against doxorubicin-induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials. 2011;32:4857–66. https://doi.org/10.1016/j.biomaterials.2011.03.048.

    Article  CAS  PubMed  Google Scholar 

  7. Rodeiro I, Delgado R, Garrido G. Effects of a Mangifera indica L. stem bark extract and mangiferin on radiation-induced DNA damage in human lymphocytes and lymphoblastoid cells. Cell Prolif. 2014;47:48–55. https://doi.org/10.1111/cpr.12078.

    Article  CAS  PubMed  Google Scholar 

  8. Na L, Zhang Q, Jiang S, Shanshan D, Zhang W, Li Y, et al. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep. 2015;5:1–9. https://doi.org/10.1038/srep10344.

    Article  CAS  Google Scholar 

  9. Henca I, Kokotkiewiczb A, Łuczkiewiczc P, Bryla E, Łuczkiewiczb M, Witkowskid JM. Naturally occurring xanthone and benzophenone derivatives exert significant anti-proliferative and proapoptotic effects in vitro on synovial fibroblasts and macrophages from rheumatoid arthritis patients. Int Immunopharmacol. 2017;49:148–54. https://doi.org/10.1016/j.intimp.2017.05.034.

    Article  CAS  Google Scholar 

  10. Gelabert-Rebato M, Wiebe JC, Martin-Rincon M, et al. Mangifera indica l. leaf extract in combination with luteolin or quercetin enhances vo2peak and peak power output and preserves skeletal muscle function during ischemia-reperfusion in humans. Front Physiol. 2018;9:1–15. https://doi.org/10.3389/fphys.2018.00740.

    Article  Google Scholar 

  11. Gelabert-Rebato M, Wiebe JC, Martin-Rincon M, Galvan-Alvarez V, Curtelin D, Perez-Valera M, et al. Enhancement of exercise performance by 48 hours, and 15-day supplementation with mangiferin and luteolin in men. Nutrients. 2019;11:2–24. https://doi.org/10.3390/nu11020344.

    Article  CAS  Google Scholar 

  12. Yang Z, Weian C, Susu H, Hamim W. Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanism. Eur J Pharmacol. 2015;771:145–51. https://doi.org/10.1016/j.ejphar.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  13. Bhatt L, Sebastian B, Joshi V. Mangiferin protects rat myocardial tissue against cyclophosphamide-induced cardiotoxicity. J Ayurveda Integr Med. 2017;8(2):62–7. https://doi.org/10.1016/j.jaim.2017.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Szandurk M, Mervid-Lad A, Szelag A. The impact of mangiferin from belamcanda chinensis on experimental colitis in rats. Inflammopharmacology. 2018;26(2):571–81. https://doi.org/10.1016/j.jaim.2017.04.006.

    Article  Google Scholar 

  15. Sahu AK, Verma VK, Mutneja E, Malik S, Nag TC, Dinda AK, et al. Mangiferin attenuates cisplatin-induced acute kidney injury in rats mediating modulation of MAPK pathway. Mol Cell Biochem. 2019;452(1–2):141–52. https://doi.org/10.1007/s11010-018-3420-y.

    Article  CAS  PubMed  Google Scholar 

  16. Basheer L, Kerem Z. Interactions between CYP3A4 and dietary polyphenols. Oxidative Med Cell Longev. 2015;2015:1–15. https://doi.org/10.1155/2015/854015.

    Article  Google Scholar 

  17. Khurana RK, Bansal AK, Beg S, Burrow AJ, Katare OP, Singh KK, et al. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: systematic development, characterization, and evaluation. Int J Pharm. 2017;518:289–306. https://doi.org/10.1016/j.ijpharm.2016.12.044.

    Article  CAS  PubMed  Google Scholar 

  18. Khurana RK, Gaspar BL, Welsby G, Katare OP, Singh KK, Singh B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phospholipid nano-mixed micellar systems. Drug Deliv Transl Res. 2018;8:617–32. https://doi.org/10.1007/s13346-018-0498-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhattacharyya S, Majhi S, Saha BP, Mukherjee PK. Chlorogenic acid – phospholipid complex improve protection against UVA-induced oxidative stress. J Photochem Photobiol B Biol. 2014;130:293–8. https://doi.org/10.1016/j.jphotobiol.2013.11.020.

    Article  CAS  Google Scholar 

  20. Wang Q, Yang J, Cui W, Chen L, Lv F, Wen X, et al. Pharmacokinetic study of major bioactive components in rats after oral administration of extract of Ilex hainanensis by high-performance liquid chromatography/electrospray ionization mass spectrometry. J Pharm Biomed Anal. 2013;77:21–8. https://doi.org/10.1016/j.jpba.2013.01.011.

    Article  CAS  PubMed  Google Scholar 

  21. Ferreira F d R, Valentim IB, Ramones ELC, Trevisan MTS, Olea-Azar C, Perez-Cruz F, et al. Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin. LWT Food Sci Technol. 2013;51:129–34. https://doi.org/10.1016/j.lwt.2012.09.032.

    Article  CAS  Google Scholar 

  22. Yang X, Zhao Y, Chen Y, Liao X, Gao C, Xiao D, et al. Host-guest inclusion system of mangiferin with β-cyclodextrin and its derivatives. Mater Sci Eng C Mater Biol Appl. 2013;33:2386–91. https://doi.org/10.1016/j.msec.2013.02.002.

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Jiang JD, Wu W, Kong WJ. The compound of mangiferin-berberine salt has potent activities in modulating lipid and glucose metabolisms in HepG2 cells. Biomed Res Int. 2016;2016:1–14. https://doi.org/10.1155/2016/8753436.

    Article  CAS  Google Scholar 

  24. Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as a novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J Pharm Sci. 2012;101(10):3833–44. https://doi.org/10.1002/jps.23251.

    Article  CAS  PubMed  Google Scholar 

  25. de Souza JRR, Feitosa JPA, Ricardo NMPS, Trevisan MTS, de Paula HCB, Ulrich CM, et al. Spray-drying encapsulation of mangiferin using natural polymers. Food Hydrocoll. 2013;33:10–8. https://doi.org/10.1016/j.foodhyd.2013.02.017.

    Article  CAS  Google Scholar 

  26. Zhou Y, Dong W, Ye J, Hao H, Zhou J, Wang R, et al. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations. Drug Deliv. 2017;24:720–8. https://doi.org/10.1080/10717544.2017.1311968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Huang Y, Gao F, Bu H, Gu W, Li Y. Daidzein-phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats. Nanoscale. 2011;3:1780–7. https://doi.org/10.1039/c0nr00879f.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang WL, Cui Y, Fan Y-Q, Yang J-K, Liu P, Liu J-P, et al. Bioavailability, and foam cells permeability enhancement of salvianolic acid B pellets based on drug–phospholipids complex technique. Eur J Pharm Biopharm. 2012;83:76–86. https://doi.org/10.1016/j.ejpb.2012.09.021.

    Article  CAS  PubMed  Google Scholar 

  29. Telange DR, Patil AT, Pethe AM, Tatode AA, Anand S, Dave VS. Kaempferol-phospholipid complex: formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. J Excipients Food Chem. 2016;7(4):89–120.

    Google Scholar 

  30. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36–49. https://doi.org/10.1016/j.ejps.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  31. Citernesi U, Sciacchitano M. Phospholipids/active ingredient complexes. Cosm Toil. 1995;110:57–68.

    CAS  Google Scholar 

  32. Bhattacharya S. Phytosomes: emerging strategy in the delivery of herbal drugs and nutraceuticals. Pharma Times. 2009;41:9–12.

    Google Scholar 

  33. Fahy E, Subramaniam S, Brown HA. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–61. https://doi.org/10.1194/jlr.E400004-JLR200.

    Article  CAS  PubMed  Google Scholar 

  34. Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447:75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev. 2008;60(6):757–67. https://doi.org/10.1016/j.addr.2007.10.013.

    Article  CAS  PubMed  Google Scholar 

  36. Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14(3):226–46.

    PubMed  Google Scholar 

  37. L. Bildstein, C. Dubernet, P. Couvreur, Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Delivery Rev. 63 (1–2)(2011) 3–23. doi: https://doi.org/10.1016/j.addr.2010.12.005.

  38. Bombardelli E. Phytosome: new cosmetic delivery system. Boll Chim Farm. 1991;130(11):431–8.

    CAS  PubMed  Google Scholar 

  39. Peer D, Karp J, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech. 2007;2:751–60. https://doi.org/10.1038/nnano.2007.387.

    Article  CAS  Google Scholar 

  40. Soussan E, Cassel S, Blanzat M, Rico-Lattes I. Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed. 2009;48(2):274–88. https://doi.org/10.1002/anie.200802453.

    Article  CAS  Google Scholar 

  41. Pathan RA, Bhandari U. Preparation and characterization of the embelin-phospholipids complex as effective drug delivery tool. J Incl Phenom Macrocycl Chem. 2011;69:139–47. https://doi.org/10.1007/s10847-010-9824-2.

    Article  CAS  Google Scholar 

  42. Singh RP, Gangadharappa HV, Mruthunjaya K. Phospholipids: unique carriers for drug delivery systems. J Drug Deliv Sci Technol. 2017;39:166–79. https://doi.org/10.1016/j.jddst.2017.03.027.

    Article  CAS  Google Scholar 

  43. Cullis PR, De Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979;559:399–420. https://doi.org/10.1016/0304-4157(79)90012-1.

    Article  CAS  PubMed  Google Scholar 

  44. Yang R, Zhang X, Li F. Role of phospholipids and copolymers in enhancing stability and controlling degradation of intravenous lipid emulsions. Colloid Surf A Physicochem Eng Asp. 2013;436:434–42. https://doi.org/10.1016/j.colsurfa.2013.07.022.

    Article  CAS  Google Scholar 

  45. Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y, et al. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10:90–101. https://doi.org/10.1021/mp300489p.

    Article  CAS  PubMed  Google Scholar 

  46. Cai X, Luan Y, Jiang Y, Song A, Shao W, Li Z, et al. Huperzine A-phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. Int J Pharm. 2012;433:102–11. https://doi.org/10.1016/j.ijpharm.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm. 2013;448:168–74. https://doi.org/10.1016/j.ijpharm.2013.03.021.

    Article  CAS  PubMed  Google Scholar 

  48. Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: formulation development, physicochemical and functional characterization. Eur J Pharm Sci. 2019;131:23–38. https://doi.org/10.1016/j.ejps.2019.02.006.

    Article  CAS  PubMed  Google Scholar 

  49. Singh D, Rawat M, Semalty A, Semalty M. Rutin-phospholipid complex: an innovative technique in novel drug delivery system-NDDS. Curr Drug Deliv. 2012;9:305–14.

    Article  CAS  Google Scholar 

  50. Singh D, Rawat MSM, Semalty A, Semalty M. Chrysophanol–phospholipid complex. J Therm Anal Calorim. 2012;111:2069–77. https://doi.org/10.1007/s10973-012-2448-6.

    Article  CAS  Google Scholar 

  51. Jin C, Zhang Z, Xia H, Hu, Jia X. A novel phospholipid complex enriched with micelles: preparation and evaluation in vitro and in vivo. Int J Nanomedicine. 2013:545. https://doi.org/10.2147/ijn.s39526.

  52. Tan Q, Liu S, Chen X, Wu M, Wang H, Yin H, et al. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS PharmSciTech. 2012;13:534–47. https://doi.org/10.1208/s12249-012-9772-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alam S, Panda JJ, Chauhan VS. Novel dipeptide nanoparticles for effective curcumin delivery. Int J Nanomedicine. 2012;7:4207–22. https://doi.org/10.2147/IJN.S33015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shadab MD, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, et al. Bromocriptine loaded chitosan nanoparticles intended for a direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci. 2013;48:393–405. https://doi.org/10.1016/j.ejps.2012.12.007.

    Article  CAS  Google Scholar 

  55. Telange DR, Wavare KD, Patil AT, Umekar MJ, Anand S, Dave VS. Drug-phospholipid complex-loaded matrix film formulation for enhanced transdermal delivery of quercetin. J Excipients Food Chem. 2018;9(2):31–50.

    Google Scholar 

  56. Dave V, Telange D, Denge R, Patil A, Umekar M, Gupta SV. Pentaerythritol as an excipient/solid-dispersion carrier for improved solubility and permeability of ursodeoxycholic acid. J Excipients Food Chem. 2018;9:80–95.

    Google Scholar 

  57. Telange DR, Bhagat SB, Patil AT, Umekar MJ, Pethe AM, Raut NA, et al. Glucosamine HCL-based solid dispersions to enhance the biopharmaceutical properties of acyclovir. J Excipients Food Chem. 2019;10:65–81.

    Google Scholar 

  58. Maiti K, Mukherjee K, Murugan V, Saha BP, Mukherjee PK. Exploring the effect of hesperetin-HSPC complex-a novel drug delivery system on the in vitro release, therapeutic efficacy and pharmacokinetics. AAPS PharmSciTech. 2009;10:943–50. https://doi.org/10.1208/s12249-009-9282-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65:13–7. https://doi.org/10.1016/j.vascn.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  60. Hamilton KL, Butt AG. Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ. 2013;37:415–26. https://doi.org/10.1152/advan.00017.2013.

    Article  PubMed  Google Scholar 

  61. Bhattacharyya S, Ahmmed SM, Saha BP, Mukherjee PK. Soya phospholipids complex of mangiferin enhances its hepatoprotectivity by improving its bioavailability and pharmacokinetics. J Sci Food Agric. 2014;94:1380–8. https://doi.org/10.1002/jsfa.6422.

    Article  CAS  PubMed  Google Scholar 

  62. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56–63.

    Article  CAS  Google Scholar 

  63. Kind PR, King EJ. Estimation of plasma phosphatase by determination of hydrolyzed phenol with amino-antipyrine. J Clin Pathol. 1954;7:322–6. https://doi.org/10.1136/jcp.7.4.322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Malloy HT, Evelyn KA. The determination of bilirubin with the photoelectric colorimeter. J Biol Chem. 1937;119:481–90.

    Article  CAS  Google Scholar 

  65. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    Article  CAS  Google Scholar 

  66. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x.

    Article  CAS  PubMed  Google Scholar 

  67. Stocks J, Dormandy TL. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol. 1971;20:95–111. https://doi.org/10.1111/j.1365-2141.1971.tb00790.x.

    Article  CAS  PubMed  Google Scholar 

  68. Beers RF, Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952;195(1):133–40.

    Article  CAS  Google Scholar 

  69. Chen ZP, Sun J, Chen HX, Xiao YY, Liu D, Chen J, et al. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia. 2010;81:1045–52. https://doi.org/10.1016/j.fitote.2010.06.028.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Q, Sun X, Peng Q, Shi S, Gong T, Zhang J. Preparation, characterization, and in vivo evaluation of a self-nano emulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int J Nanomedicine. 2011;3405. https://doi.org/10.2147/ijn.s25824.

  71. Semalty A, Semalty M, Singh D, Rawat MSM. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharma. 2009;59:335–44. https://doi.org/10.2478/v10007-009-0023-x.

    Article  CAS  Google Scholar 

  72. Saoji SD, Belgamvar VS, Dharashivkar SS, Rode AA, Mack C, Dave VS. The study of the influence of formulation and process variables on the functional attributes of simvastatin-phospholipids complex. J Pharm Innov. 2016;11:264–78. https://doi.org/10.1007/s12247-016-9256-7.

    Article  Google Scholar 

  73. Lefevre ME, Olivo R, Vanderhoff JW, Joel ADD. Accumulation of latex in Peyer’s patches and its subsequent appearance in villi and mesenteric lymph nodes. Proc Soc Exp Biol Med. 1978;159:298–302.

    Article  CAS  Google Scholar 

  74. Savić R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300:615–8. https://doi.org/10.1126/science.1078192.

    Article  CAS  PubMed  Google Scholar 

  75. Mazumdar A, Dwivedi A, Du Preez JL, du Plessis J. In vitro wound healing and cytotoxic effects of sinigrin - phytosomes complex. Int J Pharm. 2016;498:283–93. https://doi.org/10.1016/j.ijpharm..2015.12027.

    Article  Google Scholar 

  76. Pate K, Safier P. Chemical metrology methods for CMP quality. Adv Chem Mech Planazn. 2016;299–325. https://doi.org/10.1016/B978-0-08-100165-3.00012-7.

  77. Howard MD, Lu X, Jay M, Dziubla TD. Optimization of the lyophilization process for long-term stability of solid lipid nanoparticles. Drug Dev Ind Pharm. 2012;38(10):1270–9. https://doi.org/10.3109/03639045.2011.645835.

    Article  CAS  PubMed  Google Scholar 

  78. Kamiya S, Nozawa Y, Miyagishima A, Kurita T, Sadzuka Y, Sonobe T. Physical characteristics of freeze-dried griseofulvin lipids nanoparticles. Chem Pharm Bull. 2006;54:181–4. https://doi.org/10.1248/cpb.54.181.

    Article  CAS  Google Scholar 

  79. Ohshima H, Miyagishima A, Kurita T, Makino Y, Wao Y, Sonobe T. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Int J Pharm. 2009;377:180–4. https://doi.org/10.1016/j.ijpharm.2009.05.004.

    Article  CAS  PubMed  Google Scholar 

  80. Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455:219–28. https://doi.org/10.1016/j.ijpharm.2013.07.034.

    Article  CAS  PubMed  Google Scholar 

  81. Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J. 1996;71:2087–93. https://doi.org/10.1016/S0006*3495(96)79407-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Franks F. Freeze-drying of bi-products: putting principles into practice. Eur J Pharm Biopharm. 1998;45:221–9. https://doi.org/10.1016/S0939-6411(98)00004-6.

    Article  CAS  PubMed  Google Scholar 

  83. Izutsu KI, Fujimaki Y, Kuwabara A, Aoyagi N. Effect of counterions on the physical properties of I-arginine in frozen solutions and freeze-dried solids. Int J Pharm. 2005;301:161–9. https://doi.org/10.1016/j.ijpharm.2005.05.019.

    Article  CAS  PubMed  Google Scholar 

  84. Ruan J, Liu J, Zhu D, Gong T, Yang F, Hao X, et al. Preparation and evaluation of self-nano emulsified drug delivery systems (SNEDDSs) of matrine based on a drug-phospholipid complex technique. Int J Pharm. 2010;386:282–90. https://doi.org/10.1016/j.ijpharm.2009.11.026.

    Article  CAS  PubMed  Google Scholar 

  85. Venema FR, Weringa WD. The interactions of phospholipid vesicles with some anti-inflammatory agents. J Colloid Interface Sci. 1988;125(2):484–92.

    Article  CAS  Google Scholar 

  86. Lasonder E, Weringa WD. An NMR and DSC study of the interaction of phospholipid vesicles with some anti-inflammatory agents. J Colloid Interface Sci. 1990;139:469–78. https://doi.org/10.1016/0021-9797(90)90119-9.

    Article  CAS  Google Scholar 

  87. Dhore PW, Dave VS, Saoji SD, Bobde YS, Mack C, Raut NA. Enhancement of aqueous solubility and permeability of poorly water-soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm Dev Technol. 2017;22(1):90–102. https://doi.org/10.1080/10837450.2016.1193193.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang WJ, Yang M, Zhu WF, Yue PF, Cai PL, Yuan HL, et al. Process optimization, characterization and pharmacokinetic evaluation in rats of ursodeoxycholic acid-phospholipids complex. AAPS PharmSciTech. 2008;9:322–9. https://doi.org/10.1208/s12249-088-9040-1.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hara H, Ise Y, Morimota N, Shimazawa M, Ichihashi K, Ohyama M, et al. Laxative effects of agawood leaves and its mechanism. Biosci Biotechnol Biochem. 2008;72(2):335–45. https://doi.org/10.1271/bbb.70361.

    Article  CAS  PubMed  Google Scholar 

  90. Sharma S, Roy RR, Shrivastava B. Antiproliferative effect of phytosome complex of methanolic extract of terminalia arjuna bark on human breast cancer cell lines (MCF-7). Int J Drug Dev Res. 2015;7(1):173–82.

    Google Scholar 

  91. van der Merwe JD, Joubert E, Manley M, de Beer D, Malherbe CJ, Gelderblom WCA. Mangiferin glucuronidation: important hepatic modulation of antioxidant activity. Food Chem Toxicol. 2012;50:808–15. https://doi.org/10.1016/j.fct.2011.11.018.

    Article  CAS  PubMed  Google Scholar 

  92. Perrut M, Jung J, Leboeuf F. Enhancement of dissolution rate of poorly soluble active ingredients by supercritical fluid processes. Int J Pharm. 2004;288:3–10. https://doi.org/10.1016/j.ijpharm.2004.09.007.

    Article  CAS  Google Scholar 

  93. Costa P, Manuel J, Lobô S. Modeling, and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  Google Scholar 

  94. Nicolson GL. The fluid—mosaic model of membrane structure: still relevant to understanding the structure, function, and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta. 2014;1838(6):1451–66. https://doi.org/10.1016/j.bbamem.2013.10.019.

    Article  CAS  PubMed  Google Scholar 

  95. Soma CE, Dubernet C, Barratt G, Benita S, Couvreur P. Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. J Control Release. 2008;68(2):283–9. https://doi.org/10.1016/s0168-3659(00)00269-8.

    Article  Google Scholar 

  96. Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane-targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials. 2008;29(23):3367–75. https://doi.org/10.1016/j.biomaterials.2008.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J Control Release. 2005;107(2):262–75. https://doi.org/10.1016/j.jconrel.2005.03.030.

    Article  CAS  PubMed  Google Scholar 

  98. Guo Y, Terazzi E, Seemann R, Fleury RB, Baulin VA. Direct proof of spontaneous translocation of lipid covering hydrophobic nanoparticles through a phospholipids bilayer. Sci Adv. 2016;2(11):1–10. https://doi.org/10.1126/sciadv.1600261.

    Article  CAS  Google Scholar 

  99. Contini C, Schneemilch M, Gaisford S, Quirke N. Nanoparticle-membrane interactions. J Exp Nanosci. 2018;13(1):62–81. https://doi.org/10.1080/17458080.2017.1413253.

    Article  CAS  Google Scholar 

  100. Recknagel RO, Glende EA, Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther. 1989;43:139–54. https://doi.org/10.1016/0163-7258(89)90050-8.

    Article  CAS  PubMed  Google Scholar 

  101. Glende EA, Hruszewycz AM, Recknagel RO. Critical role of lipid peroxidation in carbon tetrachloride-induced loss of aminopyrine demethylase, cytochrome P-450, and glucose-6-phosphatase. Biochem Pharmacol. 1976;25:2163–70. https://doi.org/10.1016/0006-2952(76)90128-3.

    Article  CAS  PubMed  Google Scholar 

  102. Kim HJ, Bruckner JV, Dallas CE, Gallo GM. Effects of dosing vehicles on the pharmacokinetics of orally administered carbon tetrachlorides in rats. Toxicol Appl Pharmacol. 1990;102:50–60. https://doi.org/10.1016/0041-008x(90)90082-6.

    Article  CAS  PubMed  Google Scholar 

  103. Valles EG, De Castro CR, De Castro JA. N-Acetylcysteine is an early but also a late preventive agent against carbon tetrachloride-induced liver necrosis. Toxicol Lett. 1994;71:87–95. https://doi.org/10.1016/0378-4274(94)90202-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The corresponding author is thankful to Dr. Milind J. Umekar, Principal, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, for providing instrument facilities to complete this research work. The author is also thankful to Dr. Shirish P. Jain, Principal, Rajarshi Shahu College of Pharmacy, Buldhana, for constant financial and technical support to complete this manuscript on time.

Funding

The current research work did not receive any funding from government agencies.

Author information

Authors and Affiliations

Authors

Contributions

Darshan Telange: conceptualization, investigation, methodology, writing of the original draft, writing the review, and editing

Nazish Sohail: methodology, investigation, and data curation

Atul Hemke: validation and data curation

Prashant Kharkar: investigation, methodology, and writing of the original draft

Anil Pethe: conceptualization, supervision, investigation, and visualization

Corresponding author

Correspondence to Darshan R. Telange.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

The Institutional Animal Ethical Committee (IAEC) of Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, sanctioned and approved the experimental protocols (SKBCOP/IAEC/2017–2018, dated August 13, 2018) for the current study. The studies were carried out according to the ethical guidelines available by the Committee for Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telange, D.R., Sohail, N.K., Hemke, A.T. et al. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Deliv. and Transl. Res. 11, 1056–1083 (2021). https://doi.org/10.1007/s13346-020-00822-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00822-4

Keywords

Navigation