Skip to main content
Log in

Synthesis and characterization of cardo-tetrafunctional hydrophobic polybenzoxazine composites for low-k application

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The cardo tetrafunctional benzoxazines (BZ-aP-ffa, P-aP-ffa and BBA-aP-ffa) were synthesized from bis-phenols (phenolphthalein, bisphenol-Z and bisphenol-BA), paraformaldehyde, aminophenol and furfurylamine under appropriate experimental conditions. Their structural, thermal, hydrophobic, morphology and dielectric properties were characterized using modern analytical methods. Thermal studies indicate that the poly(P-aP-ffa) possesses better thermal stability (char yield 61%) than that of other two polybenzoxazines, viz. poly(BZ-aP-ffa) and poly(BBA-aP-ffa) (char yield 50 and 56%, respectively). Polybenzoxazine (P-ap-ffa) composites reinforced using varied weight percentages (10, 20, 30, 40 and 50 wt%) of GPTMS-functionalized vermiculite were prepared and the properties studied and compared with those of neat benzoxazine matrices. The values of water contact angle of neat poly(BZ-aP-ffa), poly(BBA-aP-ffa) and poly(P-aP-ffa) are found to be 142°, 141° and 142°, respectively, while that of vermiculite-reinforced poly(P-aP-ffa) composites have a water contact angle of 135° regardless of vermiculite content. A similar study indicated that the values of dielectric constant of neat polybenzoxazine matrix, 10, 20, 30, 40 and 50  wt% of GPTMS-functionalized vermiculite-reinforced poly(P-ap-ffa) composites are 3.34, 2.11, 2.01, 1.92, 1.86 and 1.84, respectively. The value of the dielectric constant is appreciably lowered to the extent of an ultra-low-k level, when vermiculite concentration increases. Results indicated that benzoxazines and composites developed in the present work can be used in the form of sealants for printed circuit boards in the field of microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Salum ML, Iguchi D, Arza CR et al (2018) Making benzoxazines greener: design, synthesis, and polymerization of a biobased benzoxazine fulfilling two principles of green chemistry. ACS Sustain Chem Eng 6:13096–13106. https://doi.org/10.1021/acssuschemeng.8b02641

    Article  CAS  Google Scholar 

  2. Sun J, Wei W, Xu Y et al (2015) A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties. RSC Adv 5:19048–19057. https://doi.org/10.1039/c4ra16582a

    Article  CAS  Google Scholar 

  3. Calò E, Maffezzoli A, Mele G et al (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem. https://doi.org/10.1039/b617180j

    Article  Google Scholar 

  4. Rimdusit S, Pirstpindvong S, Tanthapanichakoon W, Damrongsakkul S (2005) Toughening of polybenzoxazine by alloying with urethane prepolymer and flexible epoxy: a comparative study. Polym Eng Sci 45:288–296. https://doi.org/10.1002/pen.20273

    Article  CAS  Google Scholar 

  5. Agag T, Takeichi T (2003) Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 36:6010–6017. https://doi.org/10.1021/ma021775q

    Article  CAS  Google Scholar 

  6. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391. https://doi.org/10.1016/j.progpolymsci.2007.07.002

    Article  CAS  Google Scholar 

  7. Liu X, Zhang R, Li T et al (2017) Novel fully biobased benzoxazines from rosin: synthesis and properties. ACS Sustain Chem Eng 5:10682–10692. https://doi.org/10.1021/acssuschemeng.7b02650

    Article  CAS  Google Scholar 

  8. Liu Y, Yue Z, Gao J (2010) Synthesis, characterization, and thermally activated polymerization behavior of bisphenol-S/aniline based benzoxazine. Polymer (Guildf) 51:3722–3729. https://doi.org/10.1016/j.polymer.2010.06.009

    Article  CAS  Google Scholar 

  9. Chandramohan A, Alagar M (2011) Synthesis and characterization of 1, 1-bis (3-methyl-4-epoxyphenyl) cyclohexane-toughened DGEBA and TGDDM organo clay hybrid nanocomposites. High Perform Polym 23:197–211. https://doi.org/10.1177/0954008310397634

    Article  CAS  Google Scholar 

  10. Jiang Y, Yan S, Chen Y, Li S (2019) Preparation, characterization, and properties of silanized graphene oxide reinforced biobased benzoxazine-bismaleimide resin composites. J Adhes Sci Technol 33:1974–1988. https://doi.org/10.1080/01694243.2019.1623434

    Article  CAS  Google Scholar 

  11. Voirin C, Caillol S, Sadavarte NV et al (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162. https://doi.org/10.1039/c3py01194a

    Article  CAS  Google Scholar 

  12. Hariharan A, Prabunathan P, Kumaravel A et al (2020) Bio-based polybenzoxazine composites for oil-water separation, sound absorption and corrosion resistance applications. Polym Test 86:106443. https://doi.org/10.1016/j.polymertesting.2020.106443

    Article  CAS  Google Scholar 

  13. Lee YJ, Kuo SW, Huang CF, Chang FC (2006) Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS). Polymer (Guildf) 47:4378–4386. https://doi.org/10.1016/j.polymer.2006.03.111

    Article  CAS  Google Scholar 

  14. Krishnamoorthy K, Subramani D, Eeda N, Muthukaruppan A (2019) Development and characterization of fully bio-based polybenzoxazine-silica hybrid composites for low-k and flame-retardant applications. Polym Adv Technol 30:1856–1864. https://doi.org/10.1002/pat.4618

    Article  CAS  Google Scholar 

  15. Krishnadevi K, Devaraju S, Sriharshitha S et al (2019) Environmentally sustainable rice husk ash reinforced cardanol based polybenzoxazine bio-composites for insulation applications. Polym Bull. https://doi.org/10.1007/s00289-019-02854-4

    Article  Google Scholar 

  16. Ghetiya RM, Kundariya DS, Parsania PH, Patel VA (2008) Synthesis and characterization of Cardo bisbenzoxazines and their thermal polymerization. Polym - Plast Technol Eng 47:836–841. https://doi.org/10.1080/03602550802188813

    Article  CAS  Google Scholar 

  17. Chen Y, Wu Y, Dai G, Ma Y (2019) Effect of functionalized graphene on mechanical properties and dielectric constant of bismaleimide composites. J Mater Sci Mater Electron 30:6234–6241. https://doi.org/10.1007/s10854-019-00926-9

    Article  CAS  Google Scholar 

  18. Wang J, He XY, Liu JT et al (2013) Investigation of the polymerization behavior and regioselectivity of fluorene diamine-based benzoxazines. Macromol Chem Phys 214:617–628. https://doi.org/10.1002/macp.201200531

    Article  CAS  Google Scholar 

  19. Abd-Elnaiem AM, Hamdalla TA, Seleim SM et al (2021) Correction to: influence of incorporation of gallium oxide nanoparticles on the structural and optical properties of polyvinyl alcohol polymer. J Inorg Organomet Polym Mater 31:4163. https://doi.org/10.1007/s10904-021-02067-1

    Article  CAS  Google Scholar 

  20. Hussein SI, Abd-Elnaiem AM, Asafa TB, Jaafar HI (2018) Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-018-1890-0

    Article  Google Scholar 

  21. Abd-Elnaiem AM, Hussein SI, Assaedi HS, Mebed AM (2021) Fabrication and evaluation of structural, thermal, mechanical and optical behavior of epoxy–TEOS/MWCNTs composites for solar cell covering. Polym Bull 78:3995–4017. https://doi.org/10.1007/s00289-020-03301-5

    Article  CAS  Google Scholar 

  22. Ali NA, Abd-Elnaiem AM, Hussein SI et al (2020) Thermal and mechanical properties of epoxy resin functionalized copper and graphene hybrids using in-situ polymerization method. Curr Nanosci 17:494–502. https://doi.org/10.2174/1573413716999200820145518

    Article  CAS  Google Scholar 

  23. Ali NA, Hussein SI, Asafa TB, Abd-Elnaiem AM (2020) Mechanical properties and electrical conductivity of poly(methyl methacrylate)/multi-walled carbon nanotubes composites. Iran J Sci Technol Trans A Sci 44:1567–1576. https://doi.org/10.1007/s40995-020-00948-7

    Article  Google Scholar 

  24. Salahuddin N, Rehab A, El-Deeb IY, Elmokadem R (2022) Effect of graphene oxide on photo- and thermal curing of chalcone–based benzoxazine resins. Polym Bull 79:3175–3191. https://doi.org/10.1007/s00289-021-03590-4

    Article  CAS  Google Scholar 

  25. Huang P, Xu C, Lin J et al (2011) Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 1:240–250. https://doi.org/10.7150/thno/v01p0240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu GM, Shi T, Liu J, Wang Q (2014) Preparation of a liquid benzoxazine based on cardanol and the thermal stability of its graphene oxide composites. J Appl Polym Sci 131:1–8. https://doi.org/10.1002/app.40353

    Article  CAS  Google Scholar 

  27. Xu P, Yan X, Cong P et al (2017) Silane coupling agent grafted graphene oxide and its modification on polybenzoxazine resin. Compos Interfaces 24:635–648. https://doi.org/10.1080/09276440.2017.1254989

    Article  CAS  Google Scholar 

  28. Yang M, Long X, Li H et al (2019) Porous organic-polymer-derived nitrogen-doped porous carbon nanoparticles for efficient oxygen reduction electrocatalysis and supercapacitors. ACS Sustain Chem Eng 7:2236–2244. https://doi.org/10.1021/acssuschemeng.8b04919

    Article  CAS  Google Scholar 

  29. Mohamed MG, Hsu KC, Kuo SW (2015) Bifunctional polybenzoxazine nanocomposites containing photo-crosslinkable coumarin units and pyrene units capable of dispersing single-walled carbon nanotubes. Polym Chem 6:2423–2433. https://doi.org/10.1039/c5py00035a

    Article  CAS  Google Scholar 

  30. Lin H, Li L, Ren J et al (2013) Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci Rep 3:1353. https://doi.org/10.1038/srep01353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaithilingam S, Jayanthi J, Muthukaruppan A (2017) Synthesis and characterization of cardanol based fluorescent composite for optoelectronic and antimicrobial applications. Polymer (Guildf) 108:449–461. https://doi.org/10.1016/j.polymer.2016.12.017

    Article  CAS  Google Scholar 

  32. Ishida H (2011) Overview and historical background of polybenzoxazine research. Elsevier

    Book  Google Scholar 

  33. Hu W, Huang J, Zhang X et al (2020) A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl Surf Sci 507:145168. https://doi.org/10.1016/j.apsusc.2019.145168

    Article  CAS  Google Scholar 

  34. Lakshmikandhan T, Chandramohan A, Sethuraman K, Alagar M (2016) Development and characterization of functionalized Al2O3 and TiO2-reinforced polybenzoxazine nanocomposites. Des Monomers Polym 19:67–76. https://doi.org/10.1080/15685551.2015.1092014

    Article  CAS  Google Scholar 

  35. Saravanan Veera Sena V, Arumugam H, Mohamed Mydeen K et al (2022) Industrial cutting waste granite dust reinforced cardanol benzoxazine/epoxy resin hybrid composites for high-voltage electrical insulation applications. Polym Adv Technol. https://doi.org/10.1002/pat.5907

    Article  Google Scholar 

  36. Kurinchyselvan S, Chandramohan A, Hariharan A et al (2021) Mesoporous silica MCM-41-reinforced cardanol-based benzoxazine nanocomposites for low-k applications. Polym Bull 78:2043–2065. https://doi.org/10.1007/s00289-020-03198-0

    Article  CAS  Google Scholar 

  37. Dueramae I, Jubsilp C, Takeichi T, Rimdusit S (2014) High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos Part B Eng 56:197–206. https://doi.org/10.1016/j.compositesb.2013.08.027

    Article  CAS  Google Scholar 

  38. Vengatesan MR, Devaraju S, Dinakaran K, Alagar M (2012) SBA-15 filled polybenzoxazine nanocomposites for low-k dielectric applications. J Mater Chem 22:7559–7566. https://doi.org/10.1039/c2jm16566j

    Article  CAS  Google Scholar 

  39. Ariraman M, Sasi Kumar R, Alagar M (2014) Studies on FMCM-41 reinforced cyanate ester nanocomposites for low k applications. RSC Adv 4:57759–57767. https://doi.org/10.1039/c4ra09399b

    Article  CAS  Google Scholar 

  40. Srinivasan H, Arumugam H, A AD, et al (2023) Desert cotton and areca nut husk fibre reinforced hybridized bio-benzoxazine/epoxy bio-composites: Thermal, electrical and acoustic insulation applications. Constr Build Mater 363:129870. https://doi.org/10.1016/j.conbuildmat.2022.129870

    Article  CAS  Google Scholar 

  41. Arumugam H, Mohamed Ismail AA, Govindraj L, Muthukaruppan A (2021) Development of bio-based benzoxazines coated melamine foam for oil-water separation. Prog Org Coatings 153:106128. https://doi.org/10.1016/j.porgcoat.2020.106128

    Article  CAS  Google Scholar 

  42. Arumugam H, Krishnan S, Chavali M, Muthukaruppan A (2018) Cardanol based benzoxazine blends and bio-silica reinforced composites: thermal and dielectric properties. New J Chem 42:4067–4080. https://doi.org/10.1039/c7nj04506a

    Article  CAS  Google Scholar 

  43. Krishnan S, Arumugam H, Chavali M, Muthukaruppan A (2019) High dielectric, low curing with high thermally stable renewable eugenol-based polybenzoxazine matrices and nanocomposites. J Appl Polym Sci 136:1–11. https://doi.org/10.1002/app.47050

    Article  CAS  Google Scholar 

  44. Hu Z, Liu X, Ren T et al (2022) Research progress of low dielectric constant polymer materials. J Polym Eng 42:677–687. https://doi.org/10.1515/polyeng-2021-0338

    Article  CAS  Google Scholar 

  45. Zhang L, Mao J, Wang S et al (2019) Benzoxazine based high performance materials with low dielectric constant: a review. Curr Org Chem 23:809–822. https://doi.org/10.2174/1385272823666190422130917

    Article  CAS  Google Scholar 

  46. Hussein S, Abd-Elnaiem A, Ali N, Mebed A (2020) Enhanced thermo-mechanical properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) polymer blended with nanographene. Curr Nanosci 16:994–1001

    Article  CAS  Google Scholar 

  47. Singh VK, Mukhopadhyay S (2020) Banana fibre-based structures for acoustic insulation and absorption. J Ind Text. https://doi.org/10.1177/1528083720901823

    Article  Google Scholar 

  48. Valášková M, Martynková GS (2012) Vermiculite: structural properties and examples of the use. In: Valaškova M, Martynkova GS (eds) Clay minerals in nature. IntechOpen, Rijeka

    Google Scholar 

  49. Silva A, Martinho S, Stawiński W et al (2018) Application of vermiculite-derived sustainable adsorbents for removal of venlafaxine. Environ Sci Pollut Res 25:17066–17076. https://doi.org/10.1007/s11356-018-1869-6

    Article  CAS  Google Scholar 

  50. Bush AL (2001) Construction materials: lightweight aggregates. In: Buschow KHJ, Cahn RW, Flemings MC et al (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 1550–1558

    Chapter  Google Scholar 

  51. Zhu C, Gao X, Fan W, Fu X (2020) Synthesis, characterization, and properties of a novel aromatic ester-based polybenzoxazine. RSC Adv 10:6953–6959. https://doi.org/10.1039/c9ra10191h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen YP, He XY, Dayo AQ et al (2019) Synthesis and characterization of cardanol containing tetra-functional fluorene-based benzoxazine resin having two different oxazine ring structures. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2019.121620

    Article  Google Scholar 

  53. Garigipati RKS, Malkapuram R (2020) Characterization of novel composites from polybenzoxazine and granite powder. SN Appl Sci. https://doi.org/10.1007/s42452-020-03333-6

    Article  Google Scholar 

  54. Pang T, Zeng M, Feng Z et al (2019) A facile method for the preparation of furfurylamine based benzoxazine resin with high-frequency low dielectric constants and ultra-low dielectric losses. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-019-01153-y

    Article  Google Scholar 

  55. Wang J, Liu Q, Yu J et al (2022) Synthesis and characterization of benzoxazine resin based on furfurylamine. Materials (Basel). https://doi.org/10.3390/ma15238364

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thirukumaran P, Parveen AS, Sarojadevi M (2014) Synthesis and copolymerization of fully biobased benzoxazines from renewable resources. ACS Sustain Chem Eng 2:2790–2801. https://doi.org/10.1021/sc500548c

    Article  CAS  Google Scholar 

  57. Zeng K, Li H, Shi H et al (2020) Synthesis and thermal properties of silicon-containing benzoxazine. High Perform Polym 32:59–64. https://doi.org/10.1177/0954008319850615

    Article  CAS  Google Scholar 

  58. Sharma P, Dutta P, Nebhani L (2020) Integration of silica with benzoxazine to improve particle dispersion and thermal performance of composites. Colloids Surfaces A Physicochem Eng Asp 592:124515. https://doi.org/10.1016/j.colsurfa.2020.124515

    Article  CAS  Google Scholar 

  59. Lavanya TS, Gunasekaran S (2018) Spectroscopic interrogations and study on the insulating property of magnesite. Int J Chem Tech Res. 11:134–140. https://doi.org/10.20902/ijctr.2018.110623

    Article  CAS  Google Scholar 

  60. Cetin MS, Toprakci O, Taskin OS et al (2022) Expanded vermiculite-filled flexible polymer composites. J Elastomers Plast 54:145–168. https://doi.org/10.1177/00952443211029038

    Article  CAS  Google Scholar 

  61. van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer (Guildf) 16:615–620. https://doi.org/10.1016/0032-3861(75)90157-3

    Article  Google Scholar 

  62. Muthusamy A, Balaji K, Murugavel SC et al (2020) Synthesis and characterization of liquid crystalline polyesters containing α, β-unsaturated ketone moiety in the main chain derived from 2,6-bis(4-hydroxybenzylidene)cyclohexanone. Polym Sci - Ser B 62:245–255. https://doi.org/10.1134/S1560090420030112

    Article  CAS  Google Scholar 

  63. Ramesh V, Hariharan A, Balaji K et al (2022) Synthesis, spectral, and thermal studies on eugenol based hydrophobic polybenzoxazines. Polym Technol Mater 61:415–425. https://doi.org/10.1080/25740881.2021.1991951

    Article  CAS  Google Scholar 

  64. Appasamy S, Arumugam H, Govindraj L et al (2021) Studies on nitrile substituted bisphenol-F and bisphenol-Z based benzoxazines with enhanced thermal and hydrophobic properties. J Macromol Sci Part A Pure Appl Chem. https://doi.org/10.1080/10601325.2021.1991235

    Article  Google Scholar 

Download references

Acknowledgements

The PSG Management, Principal and Secretary, PSG Institute of Technology and Applied Research, Coimbatore-641062, India, are thanked by the authors for their moral and financial assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PS contributed to synthesis. HS contributed to synthesis, methodology, formal analysis, investigation, and writing–original draft. PM contributed to investigation. KB contributed to methodology, review & editing and project administration. AH contributed to conceptualization, methodology, investigation, writing–original draft, review & editing and supervision. MA contributed to resources, validation, and supervision.

Corresponding authors

Correspondence to Hariharan Arumugam or Alagar Muthukaruppan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Harinei Srinivasan and Pavithra Saravanan authors have equally contributed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, H., Saravanan, P., Madesh, P. et al. Synthesis and characterization of cardo-tetrafunctional hydrophobic polybenzoxazine composites for low-k application. Polym. Bull. 81, 887–907 (2024). https://doi.org/10.1007/s00289-023-04745-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04745-1

Keywords

Navigation