Skip to main content
Log in

Effect of graphene oxide on photo- and thermal curing of chalcone–based benzoxazine resins

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Benzoxazine monomer containing chalcone moiety was prepared through Mannich condensation reaction. The monomer and monomer mixed with different ratios of graphene oxide were exposed to UV irradiation followed by thermal curing to produce pristine thermoset and nanocomposites, respectively. The monomers, pristine thermoset and nanocomposites were characterized by analytical techniques such as 1H-NMR, 13C-NMR, FTIR, SEM and XRD. The peak characteristic to oxazine ring disappeared in the pristine thermosets and nanocomposites confirming successful ring-opening polymerization. The (001) plane in GO was not observed in the nanocomposites revealing the dispersion of graphene layers in the polymer matrix, and the dispersion was confirmed by SEM examination. The thermal properties using TGA and DSC indicate that the presence of graphene oxide catalyzes the ring-opening of oxazine and decreases the curing temperature up to 80 °C compared with pure benzoxazine monomer. In addition, the nanocomposites exhibit higher thermal stability and electrical conductivity compared with the pristine thermoset.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang W, Zhan Y, Gao X, Li R, Zhu W, Xu H, Liu B, Fang X, Xu Y, Ding T (2018) EffecEt of oxygen functionalities of graphene oxide on polymerization and thermal properties of reactive benzoxazine nanocomposites. Macromol. Res 26:77–84. https://doi.org/10.1007/s13233-018-6009-0

    Article  CAS  Google Scholar 

  2. Liu J, Agag T, Ishida H (2010) Main-chain benzoxazine oligomers: A new approach for resin transfer moldable neat benzoxazines for high performance applications. Polym J 51:5688–5694. https://doi.org/10.1016/j.polymer.2010.08.059

    Article  CAS  Google Scholar 

  3. Wang J, Fang X, Wu M, He X, Liu W, Shen X (2011) Synthesis, curing kinetics and thermal properties of bisphenol-AP-based benzoxazine. Eur Polym J 47:2158–2168. https://doi.org/10.1016/j.eurpolymj.2011.08.005

    Article  CAS  Google Scholar 

  4. Ke L, Hu D, Lu Y, Feng S, Xie Y, Xu W (2012) Copolymerization of maleimide-based benzoxazine with styrene and the curing kinetics of the resultant copolymer. Polym Degrad Stab 97:132–138. https://doi.org/10.1016/j.polymdegradstab.2011.11.011

    Article  CAS  Google Scholar 

  5. Agag T, Jin L, Ishida H (2009) A new synthetic approach for difficult benzoxazines: Preparation and polymerization of 4, 4′-diaminodiphenyl sulfone-based benzoxazine monomer. Polym J 50:5940–5944. https://doi.org/10.1016/j.polymer.2009.06.038

    Article  CAS  Google Scholar 

  6. Cao GP, Chen WJ, Liu XB (2008) Synthesis and thermal properties of the thermosetting resin based on cyano functionalized benzoxazine. Polym Degrad Stab 93:739–744. https://doi.org/10.1016/j.polymdegradstab.2007.10.002

    Article  CAS  Google Scholar 

  7. Takeichi T, Agag T, Zeidam R (2001) Preparation and properties of polybenzoxazine/poly (imide-siloxane) alloys: In situ ring-opening polymerization of benzoxazine in the presence of soluble poly (imide-siloxane) s. J Polym Sci Part A Polym Chem 39:2633–2641. https://doi.org/10.1002/pola.1240

    Article  CAS  Google Scholar 

  8. Kiskan B, Yagci Y (2007) Thermally curable benzoxazine monomer with a photodimerizable coumarin group . J Polym Sci Part A Polym Chem 45:1670–1676. https://doi.org/10.1002/pola.21934

    Article  CAS  Google Scholar 

  9. Lin RC, Mohamed MG, Hsu KC, Wu JY, Jheng YR, Kuo SW (2016) Multivalent photo-crosslinkable coumarin-containing polybenzoxazines exhibiting enhanced thermal and hydrophobic surface properties. RSC Adv 6:10683–10696. https://doi.org/10.1039/C5RA27705A

    Article  CAS  Google Scholar 

  10. Mohamed MG, Hsu KC, Kuo SW (2015) Bifunctional polybenzoxazine nanocomposites containing photo-crosslinkable coumarin units and pyrene unit capable of dispersing single-walled carbon nanotubes. Polym Chem 6:2423–2433. https://doi.org/10.1039/c5py00035a

    Article  CAS  Google Scholar 

  11. Jin L, Agag T, Yagci Y, Ishida H (2011) Methacryloyl-functional benzoxazine: photopolymerization and thermally activated polymerization. Macromolecules 44:767–772. https://doi.org/10.1021/ma102351a

    Article  CAS  Google Scholar 

  12. Koz B, Kiskan B, Yagci Y (2011) A novel benzoxazine monomer with methacrylate functionality and its thermally curable (co) polymers. Polym Bull 66:165–174. https://doi.org/10.1007/s00289-010-0261-6

    Article  CAS  Google Scholar 

  13. Lin CH, Chien CK, Chen CH, Juang TY (2017) Photo-sensitive benzoxazine II: chalcone-containing benzoxazine and its photo and thermal-cured thermoset. RSC Adv 7:37844–37851

    Article  CAS  Google Scholar 

  14. Agag T, Takeichi T (2003) Synthesis and characterization of novel benzoxazine monomers containing Allyl groups and their high performance thermosets. Macromolecules 36:6010–6016

    Article  CAS  Google Scholar 

  15. Agag T, Takeichi T (2000) Polybenzoxazine–montmorillonite hybrid nanocomposites: synthesis and characterization. Polym J 41:7083–7090

    Article  CAS  Google Scholar 

  16. Li W, Wei T, Gao Y, Xi K, Jia X (2012) Preparation of novel benzoxazine monomers containing ferrocene moiety and properties of polybenzoxazines. Polym J 53:1236–1244. https://doi.org/10.1016/j.polymer.2012.01.052

    Article  CAS  Google Scholar 

  17. Frisch HL, Mark JE (1996) Nanocomposites prepared by threading polymer chains through zeolites, mesoporous silica, or silica nanotubes. Chem Mater 8:1735–1738

    Article  CAS  Google Scholar 

  18. Agag T, Takeichi T (2000) Novel method for preparation of poly (benzoxazinone-imide). J Polym Sci Part A Polym Chem 38:1647–1655

    Article  CAS  Google Scholar 

  19. Baqar M, Agag T, Ishida H, Qutubuddin S (2011) Poly (benzoxazine-co-urethane) s: a new concept for phenolic/urethane copolymers via one-pot method. Polym J 52:307–317. https://doi.org/10.1016/j.polymer.2010.11.052

    Article  CAS  Google Scholar 

  20. Hariharan A, Prabunathan P, Subramanian SS, Kumarave M, Alagar M (2019) Blends of chalcone benzoxazine and bio-benzoxazines coated cotton fabrics for oil-water separation and bio-silica reinforced nanocomposites for low-k applications. J Polym Environ 28:598–613. https://doi.org/10.1007/s10924-019-01629-2

    Article  CAS  Google Scholar 

  21. Hariharan1 A, Prabunathan1 P, Kumaravel A, Manoj M (2020) Bio-based polybenzoxazine composites for oil-water separation, sound absorption and corrosion resistance applications. Polym. Test 86–106443. http://www.elsevier.com/locate/polytest

  22. Kumara S, Hariharanb A, Alagarb M, Dinakarana K (2020) Low-k and UV shielding polybenzoxazine nanocomposites synthesised from quinoline amine and bio-silica. Interfaces, Compos. https://doi.org/10.1080/09276440.2020.1833594

    Book  Google Scholar 

  23. Latha G, Hariharan A, Prabunathan P, Alagar M (2020) Cardanol-imidazole based benzoxazine blends and bio-silica reinforced composites with enhanced surface, thermal and dielectric properties. J Polym Environ 28:918–933. https://doi.org/10.1007/s10924-019-01649-y

    Article  CAS  Google Scholar 

  24. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based Polymer nanocomposites . Polym J 52:5–25. https://doi.org/10.1016/j.polymer.2010.11.042

    Article  CAS  Google Scholar 

  25. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 448:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  26. Alhassan SM, Qutubuddin S, Schiraldi DA, Agag T, Ishida H (2013) Preparation and thermal properties of graphene oxide/main chain benzoxazine. Eur Polym J 49:3825–3833. https://doi.org/10.1016/j.eurpolymj.2013.09.005

    Article  CAS  Google Scholar 

  27. Zeng M, Wang J, Li R, Liu J, Chen W, Xu Q, Gu Y (2013) The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites. Polym J 54:3107–3116. https://doi.org/10.1016/j.polymer.2013.03.069

    Article  CAS  Google Scholar 

  28. Alhwaige AA, Alhassan SM, Katsiotis MS, Ishida H, Qutubuddin S (2015) Interactions, morphology and thermal stability of graphene-oxide reinforced polymer aerogels derived from star-like telechelic aldehyde-terminal benzoxazine resin. RSC Adv 5:92719–92731. https://doi.org/10.1039/c5ra16188f

    Article  CAS  Google Scholar 

  29. Jo MJ, Choi H, Kim GH, Yu WR, Park M, Kim Y, Park JK, Youk JH (2018) Preparation of epoxy shape memory polymers for deployable space structures using flexible diamines. Fibers Polym 19:1799–1805. https://doi.org/10.1007/s12221-018-8549-5

    Article  CAS  Google Scholar 

  30. Meng F, Ishida H, Liu X (2014) Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids. RSC Adva 4:9471–9475. https://doi.org/10.1039/c3ra47345g

    Article  CAS  Google Scholar 

  31. Lu Y, Zhang S, Geng Z, Zhu K, Zhang M, Na R, Wang G (2017) Hybrid formation of graphene oxide–POSS and their effect on the dielectric properties of poly (aryl ether ketone) composites. New J Chem 41:3089–3096. https://doi.org/10.1039/C6NJ03802F

    Article  CAS  Google Scholar 

  32. Liu X, Yang J, Zhao W, Wang Y, Li Z, Lin Z (2016) A simple route to reduced graphene oxide-draped nanocomposites with markedly enhanced visible-light photocatalytic performance. Small 12:4077–4085. https://doi.org/10.1002/smll.201601110

    Article  CAS  PubMed  Google Scholar 

  33. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. https://doi.org/10.1021/ma100572e

    Article  CAS  Google Scholar 

  34. Biru I, Damian CM, Gârea SA, Iovu H (2016) Benzoxazine-functionalized graphene oxide for synthesis of new nanocomposites. Eur Polym J 283:244–255. https://doi.org/10.1016/j.eurpolymj.2016.08.024

    Article  CAS  Google Scholar 

  35. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  36. Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  37. Rathnayake RMNM, Wijayasinghe HWMAC, Pitawala HMTGA, Yoshimura M, Huang HH (2017) Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite . Appl Surf Sci 393:309–315. https://doi.org/10.1016/j.apsusc.2016.10.008

    Article  CAS  Google Scholar 

  38. Rehab A (1998) New photosensitive polymers as negative photoresist materials. Eur Polym J 12:1845–1855

    Article  Google Scholar 

  39. Fleming I, Williams DH (1966) Spectroscopic methods in organic chemistry. McGraw- Hill New York.

  40. Muthukaruppan A, Arumugam H, Krishnan S, Kannan K, Chavali M (2018) A low cure thermo active polymerization of chalcone based benzoxazine and cross linkable olefin blends. J Polym Res 25:163. https://doi.org/10.1007/s10965-018-1556-9

    Article  CAS  Google Scholar 

  41. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956. https://doi.org/10.1021/cm9006603

    Article  CAS  Google Scholar 

  42. Alateyah AI (2018) Thermal properties and morphology of polypropylene based on exfoliated graphite nanoplatelets/nanomagnesium oxide. Sag Open Eng. 8:432–439

    Article  CAS  Google Scholar 

  43. Lin CH, Chen ZJ, Chen CH, Wang MW, Juang TY (2017) Synthesis of a bisbenzylideneacetone-containing benzoxazine and its photo-and thermally cured thermoset. ACS Omega 2:3432–3440. https://doi.org/10.1021/acsomega.7b00573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tie W, Zhong Z, Li L, Zhang A, Shen F, Lee MH, Li XD (2012) Synthesis and characterization of novel photosensitive polysulfones with photocrosslinkable side pendants. Eur Polym J 48:2070–2075. https://doi.org/10.1016/j.eurpolymj.2012.09.002

    Article  CAS  Google Scholar 

  45. Tian X, Itkis ME, Bekyarova EB, Haddon RC (2013) anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composite. Sci Rep 3:1. https://doi.org/10.1038/srep01710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehal Salahuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, N., Rehab, A., El-Deeb, I.Y. et al. Effect of graphene oxide on photo- and thermal curing of chalcone–based benzoxazine resins. Polym. Bull. 79, 3175–3191 (2022). https://doi.org/10.1007/s00289-021-03590-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03590-4

Keywords

Navigation