Skip to main content
Log in

Synthesis of bromoepoxy/zirconium phosphate (ZrP) metalloresin by ultrasonication and exploring its applications

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, a halogenated flame-retardant resin of Tetrabromobisphenol-A (TBBPA) was synthesized by ultrasonication method and the material was characterized by using state-of-the-art instrumental techniques. Zirconium phosphate nanoparticles (ZrP) were also synthesized by the sonication approach, and then, TBBPA epoxy resin was incorporated with zirconium phosphate nanoparticles in different proportions, leading to the formation of new halogenated flame-retardant metalloresins. The synthesized metalloresins were characterized by Fourier transform infrared spectroscopy and field-emission scanning electronic microscopy. The thermal stability of the metalloresins was determined by a simultaneous thermal analyzer. The layered structure and morphology were studied by powder X-ray diffraction and transmission electron microscopy. UV–Visible spectroscopy was used for measuring the absorbance of synthesized metalloresins. Limiting oxygen index (LOI) and char yield measurements were used to study the mechanism of flame retardancy. The rheological properties of the bromoepoxy resin and the metalloresins were performed with Anton Paar Rheometer MCR102 at 25 °C. The addition of ZrP as nano-filler affects the rheological response of the metalloresins by switching the Newtonian behavior to non-Newtonian behavior. Moreover, the viscosity of the metalloresins was enhanced threefold as that of the pristine resin, thus making the metalloresins mechanically more robust. Therefore, the mechanical properties of the metalloresins were greatly enhanced. The structure and morphology are a testimony to the synthesis of the desired metalloresins. Further, the addition of ZrP nanoparticles improved the thermal stability from 285 to 335 °C as confirmed by thermogravimetry, whereas the increase in char yield and LOI (10.32–26.0% and 21.63–28.0%, respectively) revealed that flame retardancy has improved significantly. The ZrP interaction has been effective at increasing the fire safety of epoxy resins, and it also offers a unique paradigm for developing new flame-retardant metalloresins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhou T, Wu T, Xiang H, Li Z, Xu Z, Kong Q, Wang D (2019) Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenyl phosphate and POSS. J Therm Anal Calorim 135(4):2117–2124

    Article  CAS  Google Scholar 

  2. Xiao H, Liu S (2018) Zirconium phosphate (ZrP)-based functional materials: synthesis, properties and applications. Mater Des 155:19–35

    Article  CAS  Google Scholar 

  3. Khanal S, Lu Y, Dang L, Ali M, Xu S (2020) Effects of α-zirconium phosphate and zirconium organophosphonate on the thermal, mechanical and flame-retardant properties of intumescent flame-retardant high-density polyethylene composites. RSC Adv 10(51):30990–31002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, Qaiss A (2015) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113

    Article  CAS  Google Scholar 

  5. Aradhana R, Mohanty S, Nayak SK (2019) High performance electrically conductive epoxy/reduced graphene oxide adhesives for electronics packaging applications. J Mater Sci Mater Electron 30(4):4296–4309

    Article  CAS  Google Scholar 

  6. Guadagno L, Naddeo C, Raimondo M, Barra G, Vertuccio L, Russo S, Lamberti P (2017) Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials. Nanotechnology 28(9):094001

    Article  PubMed  Google Scholar 

  7. Jin FL, Park SG (2013) Recent advances in carbon nanotube-based epoxy composites. Carbon Lett 14:1–13

    Article  Google Scholar 

  8. Jiang W, Jin FL, Park SJ (2012) Thermo-mechanical behaviors of epoxy resins reinforced with nano-Al2O3 particles. J Ind Eng Chem 18:594–596

    Article  CAS  Google Scholar 

  9. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11

    Article  CAS  Google Scholar 

  10. Khanal S, Lu Y, Dang L, Ali M, Xu S (2020) Effects of α-zirconium phosphate and zirconium organophosphonate on the thermal, mechanical and flame retardant properties of intumescent flame retardant high density polyethylene composites. RSC Adv 10:30990–31002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pirsa S, Aghbolagh Sharifi K (2020) A review of the applications of bioproteins in the preparation of biodegradable films and polymers. Chem Lett 1(2):47–58

    Google Scholar 

  12. Pirsa S (2021) Nanocomposite base on carboxymethylcellulose hydrogel: Simultaneous absorbent of ethylene and humidity to increase the shelf life of banana fruit. Int J Biol Macromol 193:300–310

    Article  PubMed  CAS  Google Scholar 

  13. Spontón M, Mercado LA, Ronda JC, Galia M, Cádiz V (2008) Preparation, thermal properties and flame retardancy of phosphorus and silicon-containing epoxy resins. Polym Degrad Stab 93:2025–2031

    Article  Google Scholar 

  14. Zhang H, Xu M, Li B (2016) Synthesis of a novel phosphorus-containing curing agent and its effects on the flame retardancy, thermal degradation and moisture resistance of epoxy resins. Polym Adv Technol 27:860–871

    Article  CAS  Google Scholar 

  15. Zhang P, Shah SAA, Gao F, Sun H, Cui Z, Cheng J, Zhang J (2019) Latent curing epoxy systems with reduced curing temperature and improved stability. Thermochim Acta 676:130–138

    Article  CAS  Google Scholar 

  16. He W, Song P, Yu B, Fang Z, Wang H (2020) Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog Mater Sci 114:100687

    Article  CAS  Google Scholar 

  17. Sani IK, Geshlaghi SP, Pirsa S, Asdagh A (2021) Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocoll 117:106719

    Article  CAS  Google Scholar 

  18. Pirsa S, Farshchi E, Roufegarinejad L (2020) Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. J Polym Environ 28(12):3154–3163

    Article  CAS  Google Scholar 

  19. Hosseini SN, Pirsa S, Farzi J (2021) Biodegradable nanocomposite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polym Test 97:107182

    Article  CAS  Google Scholar 

  20. Yorghanlu RA, Hemmati H, Pirsa S (2022) Production of biodegradable sodium caseinate film containing titanium oxide nanoparticles and grape seed essence and investigation of physicochemical properties. Polym Bull 79:8217–8240

    Article  CAS  Google Scholar 

  21. Müller P, Schartel B (2016) Melamine poly (metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci 133(24):43549

    Article  Google Scholar 

  22. Ilyin SO, Brantseva TV, Gorbunova IY, Antonov SV, Korolev YM, Kerber ML (2015) Epoxy reinforcement with silicate particles: rheological and adhesive properties–Part I: Characterization of composites with natural and organically modified montmorillonites. Int J Adhes Adhes 61:127–136

    Article  CAS  Google Scholar 

  23. Sharifi KA, Pirsa S (2021) Biodegradable film of black mulberry pulp pectin/chlorophyll of black mulberry leaf encapsulated with carboxymethylcellulose/silica nanoparticles: investigation of physicochemical and antimicrobial properties. Mater Chem Phys 267:124580

    Article  CAS  Google Scholar 

  24. Jabraili A, Pirsa S, Pirouzifard MK, Amiri S (2021) Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. J Polym Environ 29(8):2557–2571

    Article  CAS  Google Scholar 

  25. Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind Eng Chem Res 50(13):7772–7783

    Article  CAS  Google Scholar 

  26. Daud M, Kamal MS, Shehzad F, Al-Harthi MA (2016) Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104:241–252

    Article  CAS  Google Scholar 

  27. Barthwal S, Singh NB (2020) Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids Surf A Physicochem Eng Asp 597:124776

    Article  CAS  Google Scholar 

  28. Rezaei M, Pirsa S, Chavoshizadeh S (2020) Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. J Inorg Organomet Polym Mater 30(7):2654–2665

    Article  CAS  Google Scholar 

  29. Yazhini KB, Prabu HG (2015) Study on flame-retardant and UV-protection properties of cotton fabric functionalized with ppy–ZnO–CNT nanocomposite. RSC Adv 5(61):49062–49069

    Article  Google Scholar 

  30. Clearfield A, Stynes JA (1964) The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem 26(1):117–129

    Article  CAS  Google Scholar 

  31. Troup JM, Clearfield A (1977) Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of alpha-zirconium phosphate. Inorg Chem 16(12):3311–3314

    Article  CAS  Google Scholar 

  32. Saxena V, Diaz A, Clearfield A, Batteas JD, Hussain MD (2013) Zirconium phosphate nanoplatelets: a biocompatible nanomaterial for drug delivery to cancer. Nanoscale 5(6):2328–2336

    Article  PubMed  CAS  Google Scholar 

  33. Bauer F, Willert-Porada M (2004) Microstructural characterization of Zr-phosphate–Nafion® membranes for direct methanol fuel cell (DMFC) applications. J Membr Sci 233(1–2):141–149

    Article  CAS  Google Scholar 

  34. Kumar CV, Chaudhari A, Rosenthal GL (1994) Enhanced energy transfer between aromatic chromophores bound to hydrophobically modified layered zirconium phosphate suspensions. J Am Chem Soc 116(1):403–404

    Article  CAS  Google Scholar 

  35. Cao G, Garcia ME, Alcala M, Burges LF, Mallouk TE (1992) Chiral molecular recognition in intercalated zirconium phosphate. J Am Chem Soc 114(19):7574–7575

    Article  CAS  Google Scholar 

  36. Bujoli B, Lane SM, Nonglanton G, Pipelier M, Leger J, Talham DR (2005) Metal phosphonates applied to biotechnologies: a novel approach to oligonucleotide microarrays. Chem Eur J11(7):1980–1988

    Article  Google Scholar 

  37. Costantino U, Curini M, Rosati O (2004) Heterogeneous catalysis in liquid phase organic synthesis, promoted by layered zirconium phosphates and phosphonates. Curr Org Chem 8(7):591–606

    Article  Google Scholar 

  38. Alberti G, Vivani R, Marmottini F, Zappelli P (1998) Microporous solids based on pillared metal(IV) phosphates and phosphonates. J Porous Mater 5(3–4):205–220

    Article  CAS  Google Scholar 

  39. Wang J, Hu Y, Li B, Gui Z, Chen Z (2004) Preparation of polyacrylamide and gamma zirconium phosphate nanocomposites by intercalative polymerization. Ultrason Sonochem 11(5):301–306

    Article  PubMed  CAS  Google Scholar 

  40. Casciola M, Alberti G, Donnadio A, Pica M, Bottino A, Piaggio P (2005) Gels of zirconium phosphate in organic solvents and their use for the preparation of polymeric nanocomposites. J Mater Chem 15(39):4262–4267

    Article  CAS  Google Scholar 

  41. Mohammadi B, Pirsa S, Alizadeh M (2019) Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polym Polym Compos 27(8):507–517

    Article  CAS  Google Scholar 

  42. Pirsa S, Mohammadi B (2021) Conducting/biodegradable chitosan-polyaniline film; antioxidant, color, solubility and water vapor permeability properties. Main Group Chem 20(2):133–147

    Article  CAS  Google Scholar 

  43. Sue HJ, Gam KT, Bestaoui N, Spurr N, Clearfield A (2004) Epoxy nanocomposites based on the synthetic a-zirconium phosphate layer structure. Chem Mater 16(2):242–249

    Article  CAS  Google Scholar 

  44. Yang D, Hu Y, Song L, Nie S, He S, Cai Y (2008) Catalyzing carbonization function of α-ZrP based intumescent fire retardant polypropylene nanocomposites. Polym Degrad Stab 93:2014–2018

    Article  CAS  Google Scholar 

  45. Ra HN, Kim HG, Kim H, Peak SH, Kim YC, Kim SS (2019) Effects of size and aspect ratio of zirconium phosphate (ZrP) on barrier properties of epoxy-ZrP nanocomposites. Prog Org Coat 133:1–7

    Article  CAS  Google Scholar 

  46. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592

    Article  CAS  Google Scholar 

  47. Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16(8):615–620

    Article  Google Scholar 

  48. Ramírez C, Rico M, Torres A (2008) Epoxy/POSS organic–inorganic hybrids: ATR-FTIR and DSC studies. Eur Polym J 44:3035–3045

    Article  Google Scholar 

  49. Fayaz I, Peerzada GM, Ganaie NB (2021) Comparative study of different methods of synthesis and their effect on the thermomechanical properties of a halogenated epoxy-based flame-retardant resin. ACS Omega 7(1):1035–1047

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2014) Introduction to spectroscopy. Cengage Learning

    Google Scholar 

  51. Zhang Q, Du Q, Jiao T (2013) Selective removal of phosphate in waters using a novel cation adsorbent: zirconium phosphate (ZrP) behavior and mechanism. J Chem Eng 221:315–321

    Article  CAS  Google Scholar 

  52. Horsley SE, Nowell DV, Stewart DT (1974) The infrared and raman spectra of α -zirconium phosphate. Spectrochim Acta Part A Mol Spectrosc 30:535–541

    Article  Google Scholar 

  53. Mosby BM, Diaz A, Bakhmutov V, Clearfield A (2014) Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl Mater Interfaces 6:585–592

    Article  PubMed  CAS  Google Scholar 

  54. Mosby BM, Díaz A, Clearfield A (2014) Surface modification of layered zirconium phosphates: a novel pathway to multifunctional materials. Dalton Trans 43(27):10328–10339

    Article  PubMed  CAS  Google Scholar 

  55. Lu HD, Wilkie CA, Ding M, Song L (2011) Thermal properties and flammability performance of poly (vinyl alcohol)/a-zirconium phosphate nanocomposites. Polym Degrad Stab 96:885–891

    Article  CAS  Google Scholar 

  56. Wang X, Hu YA, Song L, Yang HY, Xing WY, Lu HD (2011) Insitu polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222–4227

    Article  CAS  Google Scholar 

  57. Mouritz AP, Gibson AG (2006) Fire properties of polymer composite materials. Springer

    Google Scholar 

  58. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier

    Book  Google Scholar 

  59. Ahmadizadegan H (2017) Surface modification of TiO2 nanoparticles with biodegradable nanocellulose and synthesis of novel polyimide/cellulose/TiO2 membrane. J Colloid Interface Sci 49:390

    Article  Google Scholar 

  60. Esmaeili N, Salimi A, Zohuriaan-Mehr MJ, Vafayan M, Meyer W (2018) Bio-based thermosetting epoxy foam: tannic acid valorization toward dye-decontaminating and thermo-protecting applications. J Hazard Mater 357:30–39

    Article  PubMed  CAS  Google Scholar 

  61. Kocaman S, Karaman M, Gursoy M, Ahmetli G (2017) Chemical and plasma surface modification of lignocellulose coconut waste for the preparation of advanced biobased composite materials. Carbohydr Polym 159:48–57

    Article  PubMed  CAS  Google Scholar 

  62. Schweitzer PA (2000) Mechanical and corrosion-resistant properties of plastics and elastomers. CRC Press

    Book  Google Scholar 

  63. Riyazuddin, Nageswara Rao T, Hussain I, Heun Koo B (2020) Effect of aluminum tri-hydroxide/zinc borate and aluminium tri-hydroxide/melamine flame retardant systems synergies on epoxy resin. Mater Today Proc 27:2269–2272

    Article  CAS  Google Scholar 

  64. Wu Q, Zhu W, Zhang C, Liang Z, Wang B (2010) Study of fire-retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon 48(6):1799–1806

    Article  CAS  Google Scholar 

  65. Ma HY, Tong LF, Xu ZB, Fang ZP (2008) Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, morphology, rheology, and flammability. Adv Funct Mater 18(3):414–421

    Article  CAS  Google Scholar 

  66. Shuai M, Mejia AF, Chang YW, Cheng Z (2013) Hydrothermal synthesis of layered α-zirconium phosphate disks: control of aspect ratio and polydispersity for nanoarchitecture. Cryst Eng Comm 15(10):1970–1977

    Article  CAS  Google Scholar 

  67. Feng Y, He W, Zhang X, Jia X, Zhao H (2007) The preparation of nanoparticle zirconium phosphate. Mater Lett 61(14–15):3258–3261

    Article  CAS  Google Scholar 

  68. Zhu Z, Baker J, Liu C, Zhao M, Kotaki M, Sue HJ (2021) High performance epoxy nanocomposites based on dual epoxide modified α-Zirconium phosphate nanoplatelets. Polymer 212:123154

    Article  CAS  Google Scholar 

  69. Alhumade H, Rezk H, Nassef AM, Al-Dhaifallah M (2019) Fuzzy logic based-modeling and parameter optimization for improving the corrosion protection of stainless steel 304 by epoxy-graphene composite. IEEE Access 7:100899–100909

    Article  Google Scholar 

  70. Bashir A, Malik LA, Dar GN, Pandith AH (2019) Microwave-assisted hydrothermal synthesis of agglomerated spherical zirconium phosphate for removal of Cs+ and Sr2+ ions from aqueous system. Applications of ion exchange materials in the environment. Springer, pp 95–108

    Chapter  Google Scholar 

  71. Bello SA, Agunsoye JO, Adebisi JA, Hassan SB (2017) Effect of aluminium particles on mechanical and morphological properties of epoxy nanocomposites

  72. Khan R, Azhar MR, Anis A, Alam MA, Boumaza M, Al-Zahrani SM (2016) Facile synthesis of epoxy nanocomposite coatings using inorganic nanoparticles for enhanced thermo-mechanical properties: a comparative study. J Coat Technol Res 13(1):159–169

    Article  CAS  Google Scholar 

  73. Thakor SG, Rana VA, Vankar HP, Pandit TR (2021) Dielectric spectroscopy and structural characterization of nano-filler-loaded epoxy resin. J Adv Dielectr 11(02):2150011

    Article  CAS  Google Scholar 

  74. Xu X, Wang T (2018) Electrical and rheological properties of carbon black and carbon fiber filled low-density polyethylene/ethylene vinyl acetate composites. Sci Eng Compos Mater 25(4):715–723

    Article  CAS  Google Scholar 

  75. Zhang Q, Xiong H, Yan W, Chen D, Zhu M (2008) Electrical conductivity and rheological behavior of multiphase polymer composites containing conducting carbon black. Polym Eng Sci 48(11):2090–2097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Head, Department of Chemistry, University of Kashmir, Srinagar, for providing infrastructural facilities and thanks to DST, Govt. of India for funding under FIST program for the purchase of equipments which boosted our research activity in the department.

Funding

The authors also acknowledge the financial support in the form of Major Research Project No. SB/S1/PC-023/2014 sponsored by SERB, Govt. of India New Delhi for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadeem Bashir Ganaie or Ghulam Mustafa Peerzada.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayaz, I., Ganaie, N.B. & Peerzada, G.M. Synthesis of bromoepoxy/zirconium phosphate (ZrP) metalloresin by ultrasonication and exploring its applications. Polym. Bull. 81, 1327–1347 (2024). https://doi.org/10.1007/s00289-023-04744-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04744-2

Keywords

Navigation