Skip to main content
Log in

High performance electrically conductive epoxy/reduced graphene oxide adhesives for electronics packaging applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, an attempt has been done to prepare an electrically conductive epoxy adhesive filled with the high content of reduced graphene oxide (rGO) (i.e. 10–50 wt%). The lap shear test was performed to study the adhesive strength of epoxy-based adhesive systems. The test results revealed that adhesive with 40 wt% rGO possessed highest shear strength which is 72.8% higher over unmodified epoxy. While the tensile test results showed a decrement of 33% in tensile strength even with the introduction of 10 wt% rGO. The unnotched and notched impact strength of epoxy resin found to be increasing up to 51% and 100% respectively, when 30 wt% rGO was incorporated within the matrix. The fractography analysis of notched impact samples was examined by scanning electron microscopy and unveils that crack pinning is the toughening mechanism for E–rGO adhesive systems. The dispersion assessment of rGO within the epoxy matrix was visualized by transmission electron microscopy technique, revealing the effective distribution of rGO in epoxy matrix. The volume and surface conductivity was increased up to 3.44 × 10−08 S/m and 8.54 × 10−06 S with 50 wt% rGO addition, which are five and five-fold higher in comparison to the epoxy resin. At 35 °C, the thermal conductivity was enhanced by ~ 408% as compared to pristine epoxy, when 50 wt% rGO was included. Fourier transform infra‑red spectroscopy spectra was used to study the nature of interaction between rGO and epoxy matrix. The adhesive systems showed higher thermo-stability with the introduction of rGO as detected by thermo-gravimetric analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.K.B. Sharmila, A.B. Nair, B.T. Abraham, P.M.S. Beegum, E. Thomas, Polymer (Guildf) 55, 3614 (2014)

    Article  Google Scholar 

  2. H. Feng, X. Wang, D. Wu, Ind. Eng. Chem. Res. 52, 10160 (2014)

    Article  Google Scholar 

  3. X. Zhang, O. Alloul, Q. He, J. Zhu, M. Joseph, Y. Li, S. Wei, Z. Guo, Polymer (Guildf) 54, 3594 (2013)

    Article  Google Scholar 

  4. Z.A. Ghaleb, M. Mariatti, Z.M. Ariff, Composites A 58, 77 (2014)

    Article  Google Scholar 

  5. P. Pokharel, Q. Truong, D.S. Lee, Composites B 64, 187 (2014)

    Article  Google Scholar 

  6. G. Tang, Z. Jiang, X. Li, H. Zhang, S. Hong, Z. Yu, Composites B 67, 564 (2014)

    Article  Google Scholar 

  7. Graphenea, Reduced Graphene Oxide: Properties, Applications and Production Methods. (2015). https://www.azonano.com/article.aspx?ArticleID=4041. Accessed 10 May 2018

  8. M. Lundie, Z. Sljivancanin, S. Tomic, J. Mater. Chem. C 3, 7632 (2015)

    Article  Google Scholar 

  9. J.M. Vazquez-moreno, V. Yuste-sanchez, R. Sanchez-hidalgo, R. Verdejo, Eur. Polym. J. 93, 1 (2017)

    Article  Google Scholar 

  10. H. Fan, M.M. Yuen, Nanopackaging (Springer, Cham, 2008), pp. 39–59

    Book  Google Scholar 

  11. G.Y. Li, C.P. Wong, Micro-and Opto-Electronic Materials and Structures, vol 2, (Springer, New York, 2007), pp. B611–B627

    Google Scholar 

  12. S. Takeda, T. Masuko, N. Takano, T. Inada, Materials for Advanced Packaging, (Springer, Cham, 2017), pp. 469–510

    Book  Google Scholar 

  13. B.S. Yim, B.H. Lee, J. Kim, J.M. Kim, J. Mater. Sci.: Mater. Electron. 25, 5208 (2014)

    Google Scholar 

  14. B.S. Yim, J.M. Kim, J. Mater. Sci.: Mater. Electron. 26, 1678 (2015)

    Google Scholar 

  15. M. Li, C. Tang, L. Zhang, B. Shang, S. Zheng, J. Mater. Sci.: Mater. Electron. 28, 15694 (2017)

    Google Scholar 

  16. J. Kim, B. Yim, J. Kim, J. Kim, Microelectron. Reliab. 52, 595 (2012)

    Article  Google Scholar 

  17. E. Sancaktar, L. Bai, Polymer (Basel) 3, 427 (2011)

    Article  Google Scholar 

  18. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Polym. Adv. Technol. 28, 1851 (2017)

    Article  Google Scholar 

  19. R. Aradhana, S. Mohanty, S.K. Nayak, Polymer (Guildf) 141, 109 (2018)

    Article  Google Scholar 

  20. N. Yousefi, X. Lin, Q. Zheng, X. Shen, J.R. Pothnis, J. Jia, E. Zussman, J. Kim, Carbon 59, 406 (2013)

    Article  Google Scholar 

  21. T.K.B. Sharmila, J.V. Antony, M.P. Jayakrishnan, P.M.S. Beegum, E. Thomas, Mater. Des. 90, 66 (2016)

    Article  Google Scholar 

  22. Y.T. Lin, T.M. Don, C.J. Wong, F.C. Meng, Y.J. Lin, S.Y. Lee, C.F. Lee, W.Y. Chiu, Surf. Coat. Technol. (2018). https://doi.org/10.1016/j.surfcoat.2018.01.050

    Google Scholar 

  23. Y. Che, Z. Sun, R. Zhan, S. Wang, S. Zhou, J. Huang, Ceram. Int. 44, 18067 (2018)

    Article  Google Scholar 

  24. A.K. Singh, A. Parhi, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci.: Mater. Electron. 28, 17655 (2017)

    Google Scholar 

  25. A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, J. Mater. Sci.: Mater. Electron. 28, 8908 (2017)

    Google Scholar 

  26. S.M. Suresh Kumar, K. Subramanian, Adv. Polym. Technol. 37, 612 (2016)

    Article  Google Scholar 

  27. N. Norhakim, S. Ahmad, C. Chia, N. Huang, Sains Malaysiana 43, 603 (2014)

    Google Scholar 

  28. N. Adak, S. Chhetri, N. Murmu, P. Samanta, T. Kuila, Crystals 8, 111 (2018)

    Article  Google Scholar 

  29. L.R. Galicia, L.N. Mendez, A.L.M. Hernadez, A.E. Gonzalez, I.R.G. Esquivel, R.F. Ramirez, C.V. Santos, Int. J. Polym. Sci. (2013). https://doi.org/10.1155/2013/493147

    Google Scholar 

  30. S. Chhetri, N.C. Adak, P. Samanta, N.C. Murmu, T. Kuila, Polym. Test. 63, 1 (2017)

    Article  Google Scholar 

  31. H.J. Salavagione, G. Martínez, G. Ellis, Physics and Applications of Graphene Experiments (Intech, London, 2013), pp. 169–192

    Google Scholar 

  32. W. Li, H. Li, X. Yang, W. Feng, H. Huang, J. Compos. Mater. 51, 1197 (2017)

    Article  Google Scholar 

  33. J. Tang, H. Zhou, Y. Liang, X. Shi, X. Yang, J. Zhang, J. Nanomater. (2014).https://doi.org/10.1155/2014/696859

    Google Scholar 

  34. S.-Y. Lee, M.-H. Chong, M. Park, H.-Y. Kim, S.-J. Park, Carbon Lett. 15, 67 (2014)

    Article  Google Scholar 

  35. R. Aradhana, S. Mohanty, S.K. Nayak, Int. J. Adhes. 84, 238 (2018)

    Article  Google Scholar 

  36. Q. Liu, X. Yao, Z. Liu, Adv. Mater. Res. 391, 175 (2012)

    Article  Google Scholar 

  37. Y. Sun, L. Chen, J. Lin, P. Cui, M. Li, X. Du, J. Compos. Mater. 51, 1743 (2017)

    Article  Google Scholar 

  38. N. Yousefi, X. Lin, X. Shen, J. Jia, J. Kim, ECCM 2014. 1 (2014)

  39. N. Yousefi, X.Y. Lin, X. Shen, J.J. Jia, O.J. Dada, J.K. Kim, ICCM-19, 1 (2013)

  40. S. Chhetri, P. Samanta, N. Chandra Murmu, S. Kumar, Srivastava, T. Kuila, AIMS Mater. Sci. 4, 61 (2016)

    Article  Google Scholar 

  41. A. Ravindran, C. Feng, S. Huang, Y. Wang, Z. Zhao, J. Yang, Polymer (Basel)10, 477 (2018)

    Article  Google Scholar 

  42. Y.X. Fu, Z.X. He, D.C. Mo, S.S. Lu, Int. J. Therm. Sci. 86, 276 (2014)

    Article  Google Scholar 

  43. G.B. Olowojoba, S. Kopsidas, S. Eslava, E.S. Gutierrez, A.J. Kinloch, C. Mattevi, V.G. Rocha, A.C. Taylor, J. Mater. Sci. 52, 7323 (2017)

    Article  Google Scholar 

  44. B. Tang, G. Hu, H. Gao, L. Hai, Int. J. Heat Mass Transf. 85, 420 (2015)

    Article  Google Scholar 

  45. D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, J. Colloid Interface Sci. 430, 108 (2014)

    Article  Google Scholar 

  46. R. Aradhana, S. Mohanty, S. Kumar, Compos. Sci. Technol. 169, 86 (2019)

    Article  Google Scholar 

  47. C. Bora, P. Gogoi, S. Baglari, S.K. Dolui, J. Appl. Polym. Sci. 129, 3432 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Aradhana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aradhana, R., Mohanty, S. & Nayak, S.K. High performance electrically conductive epoxy/reduced graphene oxide adhesives for electronics packaging applications. J Mater Sci: Mater Electron 30, 4296–4309 (2019). https://doi.org/10.1007/s10854-019-00722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00722-5

Navigation