Skip to main content

Advertisement

Log in

Optimization of vanillin bis epoxy coating properties by changing resin composition and photocuring conditions

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Considering the current efforts for the development of new antimicrobial coatings from renewable resources suitable for application in environmentally friendly light-based technologies, the dependence of photocuring kinetics of vanillin bis epoxy resin and properties of the resulting coatings on the resin composition and process conditions was investigated. The photocuring rate, cross-linking density, and yield of the insoluble fraction, and thus the rheological, mechanical, and thermal properties of vanillin bis epoxy coatings have been found to be highly dependent on the amount of photoinitiator, solvent, and process temperature. The optimal resin, which ensures the highest thermal and mechanical characteristics of the coating, contained 3 wt% of a photoinitiator, triarylsulfonium hexafluorophosphate salts, and dichloromethane, and it was cured at 45 °C. Real-time photorheometry was shown to be able to be used for simple and quick determination of optimal resin composition and UV curing conditions to obtain coatings with desirable properties. The developed vanillin bis epoxy cross-linked coating is a viable alternative from renewable resources to petroleum-based epoxy analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Noè C, Hakkarainen M, Sangermano M (2021) Cationic UV-curing of epoxidized biobased resins. Polymers 13(1):89. https://doi.org/10.3390/polym13010089

    Article  CAS  Google Scholar 

  2. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704. https://doi.org/10.1016/j.actbio.2013.08.040

    Article  CAS  PubMed  Google Scholar 

  3. Onundi Y, Drake BA, Malecky RT, DeNardo MA, Mills MR, Kundu S, Ryabov AD, Beach ES, Horwitz CP, Simonich MT et al (2017) A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water. Green Chem 19:4234–4262. https://doi.org/10.1039/C7GC01415E

    Article  CAS  Google Scholar 

  4. Michałowicz J (2014) Bisphenol A—Sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758. https://doi.org/10.1016/j.etap.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  5. Rochester JR, Bolden AL, Kwiatkowski CF (2018) Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis. Environ Int 114:343–356. https://doi.org/10.1016/j.envint.2017.12.028

    Article  CAS  PubMed  Google Scholar 

  6. Aouf C, Benyahya S, Esnouf A, Caillol S, Boutevin B, Fulcrand H (2014) Tara tannins as phenolic precursors of thermosetting epoxy resins. Eur Polym J 55:186–198. https://doi.org/10.1016/j.eurpolymj.2014.03.034

    Article  CAS  Google Scholar 

  7. Baroncini EA, Yadav SK, Palmese GR, Stanzione JF (2016) Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J Appl Polym Sci 133:44103. https://doi.org/10.1002/app.44103

    Article  CAS  Google Scholar 

  8. Guzmán D, Serra A, Ramis X, Fernández-Francos X, de La Flor S (2019) Fully renewable thermosets based on bis-eugenol prepared by thiol-click chemistry. React Funct Polym 136:153–166. https://doi.org/10.1016/j.reactfunctpolym.2018.12.024

    Article  CAS  Google Scholar 

  9. Guzmán D, Ramis X, Fernández-Francos X, de La Flor S, Serra A (2018) Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction. Prog Org Coat 114:259–267. https://doi.org/10.1016/j.porgcoat.2017.10.025

    Article  CAS  Google Scholar 

  10. Guzmán D, Santiago D, Serra À, Ferrando F (2020) Novel bio-based epoxy thermosets based on triglycidyl phloroglucinol prepared by thiol-epoxy reaction. Polymers 12:337. https://doi.org/10.3390/polym12020337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74(9):1055. https://doi.org/10.1021/ed074p1055

    Article  CAS  Google Scholar 

  12. Borges da Silva EA, Zabkova M, Araújo JD, Cateto CA, Barreiro MF, Belgacem MN et al (2009) An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem Eng Res Des 87(9):1276–1292. https://doi.org/10.1016/j.cherd.2009.05.008

    Article  CAS  Google Scholar 

  13. Fache M, Boutevin B, Caillol S (2015) Vanillin, a key-intermediate of biobased polymers. Eur Polym J 68:488–502. https://doi.org/10.1016/j.eurpolymj.2015.03.050

    Article  CAS  Google Scholar 

  14. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599. https://doi.org/10.1021/cr900354u

    Article  CAS  PubMed  Google Scholar 

  15. Zhang C, Yan M, Cochran EW, Kessler MR (2015) Biorenewable polymers based on acrylated epoxidized soybean oil and methacrylated vanillin. Mater Today Commun 5:18–22. https://doi.org/10.1016/j.mtcomm.2015.09.003

    Article  CAS  Google Scholar 

  16. Navaruckiene A, Kasetaite S, Ostrauskaite J (2020) Vanillin-based thiol-ene systems as photoresins for optical 3D printing. Rapid Prototyp J 26(2):402–408. https://doi.org/10.1108/RPJ-03-2019-0076

    Article  Google Scholar 

  17. Navaruckiene A, Skliutas E, Kasetaite S, Rekštytė S, Raudoniene V, Bridziuviene D, Malinauskas M, Ostrauskaite J (2020) Vanillin acrylate-based resins for optical 3D printing. Polymers 12:397. https://doi.org/10.3390/polym12020397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lebedevaite M, Ostrauskaite J, Skliutas E, Malinauskas M (2019) Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets. Polymers 11:116. https://doi.org/10.3390/polym11010116357

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lebedevaite M, Ostrauskaite J, Skliutas E, Malinauskas M (2020) Photocross-linked polymers based on plant-derived monomers for potential application in optical 3D printing. J Appl Polym Sci 137:48708. https://doi.org/10.1002/app.48708

    Article  CAS  Google Scholar 

  20. Jaras J, Navaruckiene A, Skliutas E, Jersovaite J, Malinauskas M, Ostrauskaite J (2022) Thermo-responsive shape memory vanillin-based photopolymers for microtransfer molding. Polymers 4(12):2460. https://doi.org/10.3390/polym14122460

    Article  CAS  Google Scholar 

  21. Salmi-Mani H, Terreros G, Barroca-Aubry N, Aymes-Chodur C, Regeard C, Roger P (2018) Poly(ethylene terephthalate) films modified by UV-inducedsurface graft polymerization of vanillin derived monomer for antibacterial activity. Eur Polym J 103:51–58. https://doi.org/10.1016/j.eurpolymj.2018.03.038

    Article  CAS  Google Scholar 

  22. Navaruckiene A, Bridziuviene D, Raudoniene V, Rainosalo E, Ostrauskaite J (2021) Influence of vanillin acrylate-based resin composition on resin photocuring kinetics and antimicrobial properties of the resulting polymers. Materials 14:653. https://doi.org/10.3390/ma14030653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pawar NV, Patil VB, Kamble SS, Dixit GB (2008) First report of Aspergillus Niger as a plant pathogen on Zingiber officinale from India. Plant Dis 92(9):1368. https://doi.org/10.1094/PDIS-92-9-1368C

    Article  CAS  PubMed  Google Scholar 

  24. Dunne K, Prior AR, Murphy K, Wall N, Leen G, Rogers TR, Elnazir B, Greally P, Renwick J, Murphy P (2015) Emergence of persistent Aspergillus terreus colonisation in a child with cystic fibrosis. Med Mycol Case Rep 9:26–30. https://doi.org/10.1016/j.mmcr.2015.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grauzeliene S, Kastanauskas M, Talacka V, Ostrauskaite J (2022) photocurable glycerol-and vanillin-based resins for the synthesis of vitrimers. ACS Appl Polym Mater 4(8):6103–6110. https://doi.org/10.1021/acsapm.2c00914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fache M, Darroman E, Besse V, Auvergne R, Caillol S, Boutevin B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998. https://doi.org/10.1039/c3gc42613k

    Article  CAS  Google Scholar 

  27. Fache M, Auvergne R, Boutevin B, Caillol S (2015) New vanillin-derived diepoxy monomers for the synthesis of biobased thermosets. Eur Polym J 67:527–538. https://doi.org/10.1016/j.eurpolymj.2014.10.011

    Article  CAS  Google Scholar 

  28. Hernandez ED, Bassett AW, Sadler JM, La Scala JJ, Stanzione JF (2016) Synthesis and characterization of bio-based epoxy resins derived from vanillyl alcohol. CS Sustain Chem Eng 4(8):4328–4339. https://doi.org/10.1021/acssuschemeng.6b00835

    Article  CAS  Google Scholar 

  29. Mora AS, Tayouo R, Boutevin B, David G, Caillol S (2018) Vanillin-derived amines for bio-based thermosets. Green Chem 20:4075–4084. https://doi.org/10.1039/C8GC02006J

    Article  CAS  Google Scholar 

  30. Tian Y, Wang Q, Hu Y, Sun H, Cui Z, Kou L, Cheng J, Zhang J (2019) Preparation and shape memory properties of rigid-flexible integrated epoxy resins via tunable micro-phase separation structures. Polymer 178(121592):1–8. https://doi.org/10.1016/j.polymer.2019.121592

    Article  CAS  Google Scholar 

  31. Genua A, Montes S, Azcune I, Rekondo A, Malburet S, Daydé-Cazals B, Graillot A (2020) Build-to-specification vanillin and phloroglucinol derived biobased epoxy-amine vitrimers. Polymers 12:2645. https://doi.org/10.3390/polym12112645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dinu R, Lafont U, Damiano O, Mija A (2022) High glass transition materials from sustainable epoxy resins with potential applications in the aerospace and space sectors. ACS Appl Polym Mater 4(5):3636–3646. https://doi.org/10.1021/acsapm.2c00183

    Article  CAS  Google Scholar 

  33. Tan SG, Chow WS (2011) Curing characteristics and thermal properties of epoxidized soybean oil based thermosetting resin. J Am Oil Chem Soc 88:915–923. https://doi.org/10.1007/s11746-010-1748-x

    Article  CAS  Google Scholar 

  34. Yang X, Liu J, Wu Y, Liu J, Cheng F, Jiao X, Lai G (2019) Fabrication of UV-curable solvent-free epoxy modified silicone resin coating with high transparency and low volume shrinkage. Prog Org Coat 129:96–100. https://doi.org/10.1016/j.porgcoat.2019.01.005

    Article  CAS  Google Scholar 

  35. Sangermano M, Razza N, Crivello JV (2014) Cationic UV-curing: technology and applications. Macromol Mater Eng 299:775–793. https://doi.org/10.1002/mame.201300349

    Article  CAS  Google Scholar 

  36. Sangermano M, Roppolo I, Chiappone A (2018) New horizons in cationic photopolymerization. Polymers 10:136. https://doi.org/10.3390/polym10020136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Noè C, Malburet S, Bouvet-Marchand A, Graillot A, Loubat C, Sangermano M (2019) Cationic photopolymerization of bio-renewable epoxidized monomers. Prog Org Coat 133:131–138. https://doi.org/10.1016/j.porgcoat.2019.03.054

    Article  CAS  Google Scholar 

  38. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  39. Kasetaite S, Ostrauskaite J, Grazuleviciene V, Bridziuviene D, Budreckiene R, Rainosalo E (2018) Biodegradable photocross-linked polymers of glycerol diglycidyl ether and structurally different alcohols. React Funct Polym 122:42–50. https://doi.org/10.1016/j.reactfunctpolym.2017.11.005

    Article  CAS  Google Scholar 

  40. Lebedevaite M, Ostrauskaite J (2021) Influence of photoinitiator and temperature on photocross-linking kinetics of acrylated epoxidized soybean oil and properties of the resulting polymers. Ind Crops Prod 161(113210):1–8. https://doi.org/10.1016/j.indcrop.2020.113210

    Article  CAS  Google Scholar 

  41. Atif M, Bongiovanni R, Yang J (2015) Cationically UV-cured epoxy composites. Polym Rev 55(1):90–106. https://doi.org/10.1080/15583724.2014.963236

    Article  CAS  Google Scholar 

  42. Boey F, Rath SK, Ng AK, Abadie MJM (2002) Cationic UV cure kinetics for multifunctional epoxies. J Appl Polym Sci 86:518–525. https://doi.org/10.1002/app.11041

    Article  CAS  Google Scholar 

  43. Green WA (2010) Industrial photoinitiators: a technical guide. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Sangermano M, Duarte MLB, Ortiz RA, Gomez AGS, Valdez AEG (2010) Diol spiroorthocarbonates as antishrinkage additives for the cationic photopolymerization of bisphenol-A–diglycidyl ether. React Funct Polym 70(2):98–102. https://doi.org/10.1016/j.reactfunctpolym.2009.10.010

    Article  CAS  Google Scholar 

  45. Grauzeliene S, Valaityte D, Motiekaityte G, Ostrauskaite J (2021) Bio-based crosslinked polymers synthesized from functionalized soybean oil and squalene by thiol-ene UV curing. Materials 14:2675. https://doi.org/10.3390/ma14102675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kašėtaitė S, Ostrauskaitė J, Gražulevičienė V (2017) DMTA Analysis of glycerol diglycidyl ether based photocross-linked polymers. In: The 3rd world congress on mechanical, chemical, and material engineering conference. international ASET Inc, Rome. https://doi.org/10.11159/ICCPE17.106

  47. Maiorana A, Spinella S, Gross RA (2015) Bio-based alternative to the diglycidyl ether of bisphenol A with controlled materials properties. Biomacromol 16(3):1021–1031. https://doi.org/10.1021/acs.biomac.5b00014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Research Council of Lithuania (project No. S-MIP-20-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolita Ostrauskaite.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrusonyte, G., Kutová, A., Grauzeliene, S. et al. Optimization of vanillin bis epoxy coating properties by changing resin composition and photocuring conditions. Polym. Bull. 80, 12301–12317 (2023). https://doi.org/10.1007/s00289-022-04656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04656-7

Keywords

Navigation