Skip to main content
Log in

Polymer electrolyte based on guar gum and ammonium thiocyanate for proton battery application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A proton conducting natural polymer electrolyte based on guar gum and ammonium thiocyanate has been prepared by solution casting method using distilled water as solvent. FTIR confirms the complex formation between polymer and salt. Using the FTIR deconvolution method, ion transport parameters were calculated. XRD spectra reveal the amorphous nature of the polymer membranes. Ionic conductivity of 4.91 × 10–3 Scm−1 is measured for the film containing 1.2 g of GG and 0.6 g of ammonium thiocyanate at room temperature. The glass transition temperature for the highest ion-conducting membrane is found to be 86.4 °C from DSC analysis. A high value of ionic transference number implies that conduction occurs primarily due to mobile ionic species. LSV studies reveal the electrochemical stability of the polymer electrolyte as 2 V. A proton battery is constructed using the highest conducting polymer electrolyte. Its OCV and short circuit current were measured to be 1.33 V and 10.3 mA. Discharge characteristics using different loads were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aziz SB, Mamand SM (2018) The study of dielectric properties and conductivity relaxation of ion conducting chitosan: NaTf based solid electrolyte. Int J Electrochem Sci 13:10274–10288

    Article  CAS  Google Scholar 

  2. Khiar AA, Arof AK (2010) Conductivity studies of starch-based polymer electrolytes. Ionics 16:123–129

    Article  CAS  Google Scholar 

  3. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium fluoride. J Phys Chem B 120:11567–11573

    Article  CAS  PubMed  Google Scholar 

  4. Khiar ASA, Puteh R, Arof AK (2006) Conductivity studies of a chitosan-based polymer electrolyte. Phys B: Condens Matter 373(1):23–27

    Article  CAS  Google Scholar 

  5. Khiar AA, Arof AK (2011) Electrical properties of starch/chitosan-NH4NO3 polymer electrolyte. Int J Phys Math Sci 5:1662–1666

    Google Scholar 

  6. Selvalakshmi S, Vijaya N, Selvasekarapandian S, Premalatha M (2017) Biopolymer agar‐agar doped with NH4SCN as solid polymer electrolyte for electrochemical cell application. J Appl Polym Sci 134:1–10

  7. Jayan LM, Karthikeyan S, Joice Sheeba D, Angel GR, Kripa EV, Madeswaran S, Stephen A (2020) Synthesis and characterization of polyvinyl alcohol-gum arabic polymer blend membranes. Asian J Chem 32:111–114

    CAS  Google Scholar 

  8. Mobarak NN, Ramli N, Ahmad A, Rahman MYA (2012) Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ionics 224:51–57

    Article  CAS  Google Scholar 

  9. Sampathkumar L, Selvin PC, Selvasekarapandian S, Perumal P, Chitra R, Muthukrishnan M (2019) Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 25:1067–1082

    Article  CAS  Google Scholar 

  10. Jenova I, Venkatesh K, Karthikeyan S, Madeswaran S, Aristatil G, Prabu M, Joice Sheeba D (2021) Solid polymer electrolyte based on tragacanth gum-ammonium thiocyanate. J Solid State Electrochem 25:2371–2383

    Article  Google Scholar 

  11. Jenova I, Venkatesh K, Karthikeyan S, Madeswaran S, Arivanandhan M, Joice Sheeba D (2021) Characterization of solid polymer electrolyte based on gum tragacanth and lithium nitrate. Polym-Plast Technol Mater 60:1898–1912

    Google Scholar 

  12. Selvakumar M, Bhat DK (2008) LiClO4 doped cellulose acetate as biodegradable polymer electrolyte for supercapacitors. J Appl Polym Sci 110(1):594–602

    Article  CAS  Google Scholar 

  13. Mishra RK, Anis A, Mondal S, Dutt M, Banthia AK (2009) Reparation and characterization of amidated pectin based polymer electrolyte membranes. Chin J Polym Sci 27(05):639–646

    Article  CAS  Google Scholar 

  14. Yang JM, Wang NC, Chiu HC (2014) Preparation and characterization of poly (vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. J Membr Sci 457:139–148

    Article  CAS  Google Scholar 

  15. Pawlicka A, Tavares FC, Dörr DS, Cholant CM, Ely F, Santos MJ, Avellaneda CO (2019) Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochim Acta 305:232–239

    Article  CAS  Google Scholar 

  16. Noor IS, Majid SR, Arof AK, Djurado D, Neto SC, Pawlicka A (2012) Characteristics of gellan gum–LiCF3SO3 polymer electrolytes. Solid State Ionics 225:649–653

    Article  CAS  Google Scholar 

  17. Kai Ling C, Aung MM, Rayung M, Chuah Abdullah L, Lim HN, Mohd Noor IS (2019) Performance of ionic transport properties in vegetable oil-based polyurethane acrylate gel polymer electrolyte. ACS Omega 4(2):2554–2564

    Article  CAS  Google Scholar 

  18. Anthony LS, Vasudevan M, Perumal V, Ovinis M, Raja PB, Edison TN (2021) Bioresource-derived polymer composites for energy storage applications: brief review. J Environ Chem Eng 9(5):105832

    Article  CAS  Google Scholar 

  19. Barak S, Mudgil D, Taneja S (2020) Exudate gums: chemistry, properties and food applications–a review. J Sci Food Agric 100(7):2828–2835

    Article  CAS  PubMed  Google Scholar 

  20. Gunasekaran A, Sorrentino A, Asiri AM, Anandan S (2020) Guar gum-based polymer gel electrolyte for dye-sensitized solar cell applications. Sol Energy 208:160–165

    Article  CAS  Google Scholar 

  21. Huang Y, Zhang J, Liu J, Li Z, Jin S, Li Z, Zhou H (2019) Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater Today Energy 14:100349

    Article  Google Scholar 

  22. Iqbal DN, Tariq M, Khan SM, Gull N, Iqbal SS, Aziz A, Iqbal M (2020) Synthesis and characterization of chitosan and guar gum based ternary blends with polyvinyl alcohol. Int J Biol Macromol 143:546–554

    Article  CAS  PubMed  Google Scholar 

  23. Azzahari AD, Abdul Mutalib NF, Rizwan M, Naceur Abouloula C, Selvanathan V, Sonsudin F, Yahya R (2018) Improved ionic conductivity in guar gum succinate–based polymer electrolyte membrane. High Perform Polym 30:993–1001

    Article  CAS  Google Scholar 

  24. Vijayendran BR, Bone T (1984) Absolute molecular weight and molecular weight distribution of guar by size exclusion chromatography and low-angle laser light scattering. Carbohyd Polym 4:299–313

    Article  CAS  Google Scholar 

  25. Sharma G, Sharma, et al (2018) Guar gum and its composites as potential materials for diverse applications: a review. Carbohyd Polym 199:534–545

    Article  CAS  Google Scholar 

  26. Li Q, Yang H, Xie L, Yang J, Nuli Y, Wang J (2016) Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chem Commun 52:13479–13482

    Article  CAS  Google Scholar 

  27. Carvalho DV, Loeffler N, Hekmatfar M, Moretti A, Kim GT, Passerini S (2018) Evaluation of guar gum-based biopolymers as binders for lithium-ion batteries electrodes. Electrochim Acta 265:89–97

    Article  CAS  Google Scholar 

  28. Kuruba R, Datta MK, Damodaran K, Jampani P, Gattu B, Patel PP, Kumta PN (2015) Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes. J Power Sources 298:331–340

    Article  CAS  Google Scholar 

  29. Sudhakar YN, Selvakumar M, Bhat DK (2014) Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte. Mater Sci Eng, B 180:12–19

    Article  CAS  Google Scholar 

  30. Abirami M, Saratha R, Shilpa R, Vinitha B (2020) Preparation and characterization of Guar gum-based solid biopolymer electrolyte doped with lithium bis (trifluoromethanesulphonyl) imide (LiTFSI) plasticized with glycerol. Bull Mater Sci 43:1–6

    Article  Google Scholar 

  31. Nithya S, Selvasekarapandian S, Karthikeyan S, Inbavalli D, Sikkinthar S, Sanjeeviraja C (2014) AC impedance studies on proton-conducting PAN: NH 4 SCN polymer electrolytes. Ionics 20:1391–1398

    Article  CAS  Google Scholar 

  32. Aziz SB, Abidin ZH (2015) Ion-transport study in nanocomposite solid polymer electrolytes based on chitosan: electrical and dielectric analysis. J Appl Polym Sci 132(15):1–10

  33. Mudgil D, Barak S, Khatkar BS (2012) X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromol 50:1035–1039

    Article  CAS  PubMed  Google Scholar 

  34. Dodi G, Hritcu D, Popa MI (2011) Carboxymethylation of guar gum: synthesis and characterization. Cellul Chem Technol 45(3):171

    CAS  Google Scholar 

  35. Kundu S, Abdullah MF, Das A, Basu A et al (2016) Antifungal ouzo nanoparticles from guar gum propionate. RSC Adv 6:106563–106571

    Article  CAS  Google Scholar 

  36. Devi GN, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23:3377–3388

    Article  Google Scholar 

  37. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22:3209–3223

    Article  CAS  Google Scholar 

  38. Christopher Selvin P, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Chandra L (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24:3535–3542

    Article  CAS  Google Scholar 

  39. Woo HJ, Majid SR, Arof AK (2011) Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ionics 199:14–20

    Article  Google Scholar 

  40. Noor NAM, Isa MIN (2019) Investigation on transport and thermal studies of solid polymer electrolyte based on carboxymethyl cellulose doped ammonium thiocyanate for potential application in electrochemical devices. Int J Hydrog Energy 44:8298–8306

    Article  CAS  Google Scholar 

  41. Shamsuri NA, Zaine SNA, Yusof YM, Yahya WZN, Shukur MF (2020) Effect of ammonium thiocyanate on ionic conductivity and thermal properties of polyvinyl alcohol–methylcellulose–based polymer electrolytes. Ionics 26:6083–6093

    Article  CAS  Google Scholar 

  42. Abdalrahman AA, Aziz SB, Karim WO (2022) EIS and FTIR approaches to study the ion transport parameters and relaxation dynamics of Na+ 1 ion in SPE based on MC polymer inserted with sodium salt. Results Phys 36:105439

    Article  Google Scholar 

  43. Nofal MM, Hadi JM, Aziz SB, Brza MA, Asnawi AS, Dannoun EM, Abdullah AM, Kadir MF (2021) A study of methylcellulose based polymer electrolyte impregnated with potassium ion conducting carrier: Impedance, eec modeling, ftir, dielectric, and device characteristics. Materials 14(17):4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anandan D, Madhumathi G, Nambiraj NA, Jaiswal AK (2019) Gum based 3D composite scaffolds for bone tissue engineering applications. Carbohyd Polym 214:62–70

    Article  CAS  Google Scholar 

  45. Abdel-Raouf ME, El-Saeed SM, Zaki EG, Al-Sabagh AM (2018) Green chemistry approach for preparation of hydrogels for agriculture applications through modification of natural polymers and investigating their swelling properties. Egypt J Pet 27:1345–1355

    Article  Google Scholar 

  46. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104:267–276

    Article  CAS  Google Scholar 

  47. Baskaran R, Selvasekarapandian S, Hirankumar G, Bhuvaneswari MS (2004) Vibrational, ac impedance and dielectric spectroscopic studies of poly (vinylacetate)–N, N–dimethylformamide–LiClO4 polymer gel electrolytes. J Power Sources 134:235–240

    Article  CAS  Google Scholar 

  48. Winie T, Arof Sabu Thomas AK (2019) Polymer electrolytes characterization techniques and energy applications. Wiley-VCH publications, Germany

    Google Scholar 

  49. Woo HJ, Majid SR, Arof AK (2011) Transference number and structural analysis of proton conducting polymer electrolyte based on poly (ϵ-caprolactone). Mater Res Innov. https://doi.org/10.1179/143307511X13031890747697

    Article  Google Scholar 

  50. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  51. Bhargav PB, Sarada BA, Sharma AK, Rao VN (2009) Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci Part A 47:131–137

    Article  Google Scholar 

  52. Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Physica B 357:412–419

    Article  CAS  Google Scholar 

  53. Reddy MJ, Sreekanth T, Rao US (1999) Study of the plasticizer effect on a (PEO+ NaYF4) polymer electrolyte and its use in an electrochemical cell. Solid State Ionics 126:55–63

    Article  CAS  Google Scholar 

  54. Chitra R, Sathya P, Selvasekarapandian S, Meyvel S (2020) Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym Bull 77:1555–1579

    Article  CAS  Google Scholar 

  55. Mohamed AS, Shukur MF, Kadir MFZ, Yusof YM (2020) Ion conduction in chitosan-starch blend based polymer electrolyte with ammonium thiocyanate as charge provider. J Polym Res 27:1–14

    Article  Google Scholar 

  56. Michael MS, Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98:167–174

    Article  CAS  Google Scholar 

  57. Arya A, Sharma AL (2019) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res 27:334–345

    Article  CAS  Google Scholar 

  58. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21:1017–1029

    Article  CAS  Google Scholar 

  59. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 357(22–23):3751–3756

    Article  CAS  Google Scholar 

  60. Salleh NS, Aziz SB, Aspanut Z, Kadir MF (2016) Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics 22(11):2157–2167

    Article  CAS  Google Scholar 

  61. Aziz SB, Abdullah RM (2018) Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt] x: PEO (x–1)(10≤ x≤ 50). Electrochim Acta 285:30–46

    Article  CAS  Google Scholar 

  62. Kulshrestha N, Gupta PN (2016) Structural and electrical characterizations of 50:50 PVA: starch blend complexed with ammonium thiocyanate. Ionics 22(5):671–681

    Article  CAS  Google Scholar 

  63. Polu AR, Kumar R (2011) AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA–PEG blended polymer electrolytes. Bull Mater Sci 34(5):1063–1067

    Article  CAS  Google Scholar 

  64. Samsudin AS, Isa MI (2012) Structural and electrical properties of carboxy methylcellulose-dodecyltrimethyl ammonium bromide-based biopolymer electrolytes system. Int J Polym Mater 61(1):30–40

    Article  CAS  Google Scholar 

  65. Mitsuiki M, Mizuno A, Motoki M (1999) Determination of molecular weight of agars and effect of the molecular weight on the glass transition. J Agric Food Chem 47:473–478

    Article  CAS  PubMed  Google Scholar 

  66. Tanzi MC, Fare S (2017) Characterization of polymeric biomaterials. Woodhead Publishing Series in Biomaterials, Woodhead Publishing Elsevier

    Google Scholar 

  67. Kumar A, De A, Mozumdar S (2015) Synthesis of acrylate guar-gum for delivery of bio-active molecules. Bull Mater Sci 38(4):1025–1032

    Article  CAS  Google Scholar 

  68. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2007) Structure, thermal and transport properties of PVAc–LiClO4 solid polymer electrolytes. J Phys Chem Solids 68:407–412

    Article  CAS  Google Scholar 

  69. Samsudin AS, Lai HM, Isa MIN (2014) Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim Acta 129:1–13

    Article  CAS  Google Scholar 

  70. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Madeswaran S (2017) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Article  CAS  Google Scholar 

  71. TianKhoon L, Ataollahi N, Hassan NH, Ahmad A (2016) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20:203–213

    Article  CAS  Google Scholar 

  72. Pratap R, Singh B, Chandra S (2006) Polymeric rechargeable solid-state proton battery. J Power Sources 161:702–706

    Article  CAS  Google Scholar 

  73. Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J Solid State Electrochem 18:2255–2266

    Article  CAS  Google Scholar 

  74. Owens BB, Scrosati B, Reale P (2009) primary batteries – nonaqueous systems | Solid-State: silver-iodine. In: Garche J (ed) Encyclopedia of Electrochemical Power Sources. Elsevier Science, pp 120–128

    Chapter  Google Scholar 

  75. Mishra K, Hashmi SA, Rai DK (2013) Nanocomposite blend gel polymer electrolyte for proton battery application. J Solid State Electrochem 17:785–793

    Article  CAS  Google Scholar 

  76. Rafiquzzaman M (2008) Microprocessor theory and applications with 68000/68020 and Pentium. Wiley

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the facilities provided by Madras Christian College under college with Potential of Excellence.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karthikeyan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, K., Jenova, I., Karthikeyan, S. et al. Polymer electrolyte based on guar gum and ammonium thiocyanate for proton battery application. Polym. Bull. 80, 10751–10773 (2023). https://doi.org/10.1007/s00289-022-04572-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04572-w

Navigation