Skip to main content
Log in

Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The use of conventional plastics for food packaging introduces serious environmental risks (soil and water). An alternative to minimize these risks is based on the use of biopolymers, which introduce ecological benefits for the deterioration process as well as extending the shelf life of food. Biopolymers are a diverse group of materials, with different properties and possibilities for applications. Herein, this review aims to present the most promising biomaterials for food packaging. The criteria for this systematic literature review were based on the selection of 77 studies from 22 different countries: India (13 studies), Brazil (12 studies), China (11 studies), and Iran (9 studies). The majority of the bio-based polymers applied in the food packaging were polysaccharides (chitosan, starch, cellulose, and its derivatives); biodegradable aliphatic polyester (polylactic acid—PLA); and proteins (gelatin). The bio-based polymers for foods package were divided into categories, and those with the highest number of publications in the last five years were applied for fruits and pseudo-fruit (25 studies) followed by meats (23 studies), corresponding to 62.3% of the studies. Reinforce agents based on metallic compounds and essential oils were applied to improve the functionality and the performance of the films, with a direct influence on the shelf life of the foods. In summary, the use of food packaging with bio-based polymers has been highlighted due to its competitive characteristics and the potential use as an alternative to petrochemical plastics in conventional packaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Greene JP (2021) Bio-based and biodegradable plastics. Automotive plastics and composites. Elsevier, Amsterdam, pp 149–174

    Chapter  Google Scholar 

  2. Biswas S, Pal A (2021) Application of biopolymers as a new age sustainable material for surfactant adsorption: a brief review. Carbohydr Polym Technol Appl 2:100145. https://doi.org/10.1016/J.CARPTA.2021.100145

    Article  CAS  Google Scholar 

  3. Pal P, Pal A (2019) Treatment of real wastewater: kinetic and thermodynamic aspects of cadmium adsorption onto surfactant-modified chitosan beads. Int J Biol Macromol 131:1092–1100. https://doi.org/10.1016/j.ijbiomac.2019.03.121

    Article  CAS  PubMed  Google Scholar 

  4. Das D, Pal A (2016) Adsolubilization phenomenon perceived in chitosan beads leading to a fast and enhanced malachite green removal. Chem Eng J 290:371–380. https://doi.org/10.1016/J.CEJ.2016.01.062

    Article  CAS  Google Scholar 

  5. El-Mossalamy EH, Batouti MEL, Fetouh HA (2021) The role of natural biological macromolecules: deoxyribonucleic and ribonucleic acids in the formulation of new stable charge transfer complexes of thiophene Schiff bases for various life applications. Int J Biol Macromol 193:1572–1586. https://doi.org/10.1016/j.ijbiomac.2021.10.220

    Article  CAS  PubMed  Google Scholar 

  6. Udayakumar GP, Muthusamy S, Selvaganesh B et al (2021) Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. J Environ Chem Eng 9:105322. https://doi.org/10.1016/j.jece.2021.105322

    Article  CAS  Google Scholar 

  7. George A, Sanjay MR, Srisuk R et al (2020) A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol 154:329–338. https://doi.org/10.1016/j.ijbiomac.2020.03.120

    Article  CAS  PubMed  Google Scholar 

  8. Rebelo R, Fernandes M, Fangueiro R (2017) Biopolymers in medical implants: a brief review. Proc Eng 200:236–243. https://doi.org/10.1016/J.PROENG.2017.07.034

    Article  CAS  Google Scholar 

  9. Samavedi S, Poindexter LK, van Dyke M, Goldstein AS (2014) Synthetic biomaterials for regenerative medicine applications. Regen Med Appl Organ Transplant. https://doi.org/10.1016/B978-0-12-398523-1.00007-0

    Article  Google Scholar 

  10. Zając M, Jamróz E, Guzik P et al (2021) Active biopolymer films based on furcellaran, whey protein isolate and Borago officinalis extract: characterization and application in smoked pork ham production. J Sci Food Agric 101:2884–2891. https://doi.org/10.1002/jsfa.10920

    Article  CAS  PubMed  Google Scholar 

  11. Kritchenkov AS, Egorov AR, Volkova OV et al (2021) Novel biopolymer-based nanocomposite food coatings that exhibit active and smart properties due to a single type of nanoparticles. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128676

    Article  PubMed  Google Scholar 

  12. Dickinson E (2017) Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll 68:219–231. https://doi.org/10.1016/J.FOODHYD.2016.06.024

    Article  CAS  Google Scholar 

  13. Elbatouti M, Fetouh HA (2019) Extraction of eco-friendly and biodegradable surfactant for inhibition of copper corrosion during acid pickling. Adsorpt Sci Technol 37:649–663. https://doi.org/10.1177/0263617419865130

    Article  CAS  Google Scholar 

  14. Fetouh HA, Hefnawy A, Attia AM, Ali E (2020) Facile and low-cost green synthesis of eco-friendly chitosan-silver nanocomposite as novel and promising corrosion inhibitor for mild steel in chilled water circuits. J Mol Liq 319:114355. https://doi.org/10.1016/j.molliq.2020.114355

    Article  CAS  Google Scholar 

  15. Indumathi MP, Saral Sarojini K, Rajarajeswari GR (2019) Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int J Biol Macromol 132:1112–1120. https://doi.org/10.1016/j.ijbiomac.2019.03.171

    Article  CAS  PubMed  Google Scholar 

  16. Manikandan NA, Pakshirajan K, Pugazhenthi G (2020) Preparation and characterization of environmentally safe and highly biodegradable microbial polyhydroxybutyrate (PHB) based graphene nanocomposites for potential food packaging applications. Int J Biol Macromol 154:866–877. https://doi.org/10.1016/j.ijbiomac.2020.03.084

    Article  CAS  PubMed  Google Scholar 

  17. Vargas CG, Costa TMH, de Rios A, O, Flôres SH, (2017) Comparative study on the properties of films based on red rice (Oryza glaberrima) flour and starch. Food Hydrocoll 65:96–106. https://doi.org/10.1016/j.foodhyd.2016.11.006

    Article  CAS  Google Scholar 

  18. Zare M, Namratha K, Ilyas S et al (2019) Smart fortified PHBV-CS biopolymer with ZnO–Ag nanocomposites for enhanced shelf life of food packaging. ACS Appl Mater Interfaces 11:48309–48320. https://doi.org/10.1021/acsami.9b15724

    Article  CAS  PubMed  Google Scholar 

  19. Martău GA, Mihai M, Vodnar DC (2019) The use of chitosan, alginate, and pectin in the biomedical and food sector—Biocompatibility, bioadhesiveness, and biodegradability. Polymers (Basel) 11:1837. https://doi.org/10.3390/polym11111837

    Article  CAS  PubMed  Google Scholar 

  20. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652. https://doi.org/10.1016/J.PROGPOLYMSCI.2013.05.008

    Article  CAS  Google Scholar 

  21. Jaramillo-Quiceno N, Restrepo-Osorio A (2020) Water-annealing treatment for edible silk fibroin coatings from fibrous waste. J Appl Polym Sci. https://doi.org/10.1002/app.48505

    Article  Google Scholar 

  22. Han JH (2005) New technologies in food packaging: overiew. Innovations in food packaging. Elsevier, Amsterdam, pp 3–11

    Chapter  Google Scholar 

  23. Pérez-Moreno A, Fabián F-L, Hermes P-H et al (2021) Nanoscience and nanotechnology regarding food packaging and nanomaterials to extending the postharvest life and the shelf life of foods. Food losses sustainable postharvest and food technologies. Elsevier, Amsterdam, pp 313–384

    Chapter  Google Scholar 

  24. Mohammadi H, Kamkar A, Misaghi A et al (2019) Nanocomposite films with CMC, okra mucilage, and ZnO nanoparticles: Extending the shelf-life of chicken breast meat. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100330

    Article  Google Scholar 

  25. Indumathi MP, Saral Sarojini K, Rajarajeswari GR (2019) Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int J Biol Macromol 132:1112–1120. https://doi.org/10.1016/j.ijbiomac.2019.03.171

    Article  CAS  PubMed  Google Scholar 

  26. Jovanović J, Ćirković J, Radojković A et al (2021) Chitosan and pectin-based films and coatings with active components for application in antimicrobial food packaging. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2021.106349

    Article  Google Scholar 

  27. Zhou X, Cheng R, Wang B et al (2021) Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohyd Polym 251:117117. https://doi.org/10.1016/j.carbpol.2020.117117

    Article  CAS  Google Scholar 

  28. Guo X, Chen B, Wu X et al (2020) Utilization of cinnamaldehyde and zinc oxide nanoparticles in a carboxymethylcellulose-based composite coating to improve the postharvest quality of cherry tomatoes. Int J Biol Macromol 160:175–182. https://doi.org/10.1016/j.ijbiomac.2020.05.201

    Article  CAS  PubMed  Google Scholar 

  29. Restuccia D, Spizzirri UG, Parisi OI et al (2010) New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435. https://doi.org/10.1016/j.foodcont.2010.04.028

    Article  Google Scholar 

  30. Yang S, Liu L, Chen H et al (2021) Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles. Food Hydrocoll 112:106258. https://doi.org/10.1016/j.foodhyd.2020.106258

    Article  CAS  Google Scholar 

  31. Sani MA, Tavassoli M, Hamishehkar H, McClements DJ (2021) Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: application as biodegradable smart food packaging materials. Carbohyd Polym 255:117488. https://doi.org/10.1016/j.carbpol.2020.117488

    Article  CAS  Google Scholar 

  32. Moazami Goodarzi M, Moradi M, Tajik H et al (2020) Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. Int J Biol Macromol 153:240–247. https://doi.org/10.1016/j.ijbiomac.2020.03.014

    Article  CAS  PubMed  Google Scholar 

  33. Alizadeh-Sani M, Tavassoli M, McClements DJ, Hamishehkar H (2021) Multifunctional halochromic packaging materials: saffron petal anthocyanin loaded-chitosan nanofiber/methyl cellulose matrices. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.106237

    Article  Google Scholar 

  34. Gheorghita R, Amariei S, Norocel L, Gutt G (2020) New edible packaging material with function in shelf life extension: applications for the meat and cheese industries. Foods 9:562. https://doi.org/10.3390/foods9050562

    Article  CAS  Google Scholar 

  35. Shrivastava A, Dondapati S (2021) Biodegradable composites based on biopolymers and natural bast fibres: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.02.652

    Article  PubMed  PubMed Central  Google Scholar 

  36. Samsalee N, Sothornvit R (2020) Characterization of food application and quality of porcine plasma protein-based films incorporated with chitosan or encapsulated turmeric oil. Food Bioprocess Technol 13:488–500. https://doi.org/10.1007/s11947-020-02411-2

    Article  CAS  Google Scholar 

  37. Phupoksakul T, Leuangsukrerk M, Somwangthanaroj A et al (2017) Storage stability of packaged baby formula in poly(lactide)-whey protein isolate laminated pouch. J Sci Food Agric 97:3365–3373. https://doi.org/10.1002/jsfa.8187

    Article  CAS  PubMed  Google Scholar 

  38. Alizadeh-Sani M, Mohammadian E, McClements DJ (2020) Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: Application for preservation of refrigerated meat. Food Chem. https://doi.org/10.1016/j.foodchem.2020.126782

    Article  PubMed  Google Scholar 

  39. Li F, Abdalkarim SYH, Yu H-Y et al (2020) Bifunctional reinforcement of green biopolymer packaging nanocomposites with natural cellulose nanocrystal-rosin hybrids. ACS Appl Bio Mater 3:1944–1954. https://doi.org/10.1021/acsabm.9b01100

    Article  CAS  PubMed  Google Scholar 

  40. Melo PTS, Nunes JC, Otoni CG et al (2019) Combining cupuassu (Theobroma grandiflorum) puree, pectin, and chitosan nanoparticles into novel edible films for food packaging applications. J Food Sci 84:2228–2233. https://doi.org/10.1111/1750-3841.14685

    Article  CAS  PubMed  Google Scholar 

  41. Tan W, Zhang J, Zhao X et al (2020) Preparation and physicochemical properties of antioxidant chitosan ascorbate/methylcellulose composite films. Int J Biol Macromol 146:53–61. https://doi.org/10.1016/j.ijbiomac.2019.12.044

    Article  CAS  PubMed  Google Scholar 

  42. Souza VGL, Fernando AL, Pires JRA et al (2017) Physical properties of chitosan films incorporated with natural antioxidants. Ind Crops Prod 107:565–572. https://doi.org/10.1016/j.indcrop.2017.04.056

    Article  CAS  Google Scholar 

  43. Jardine A, Sayed S (2018) Valorisation of chitinous biomass for antimicrobial applications. Pure Appl Chem 90:293–304. https://doi.org/10.1515/pac-2017-0707

    Article  CAS  Google Scholar 

  44. Zahan KA, Azizul NM, Mustapha M et al (2020) Application of bacterial cellulose film as a biodegradable and antimicrobial packaging material. Mater Today Proc 31:83–88. https://doi.org/10.1016/j.matpr.2020.01.201

    Article  CAS  Google Scholar 

  45. Koşarsoy Ağçeli G, Hammamchi H, Cihangir N (2022) Novel levan/bentonite/essential oil films: characterization and antimicrobial activity. J Food Sci Technol 59:249–256. https://doi.org/10.1007/s13197-021-05009-4

    Article  CAS  PubMed  Google Scholar 

  46. Berti S, Jagus RJ, Flores SK (2021) Effect of rice bran addition on physical properties of antimicrobial biocomposite films based on starch. Food Bioprocess Technol. https://doi.org/10.1007/s11947-021-02669-0

    Article  Google Scholar 

  47. Gaglio R, Botta L, Garofalo G et al (2020) In vitro antifungal activity of biopolymeric foam activated with carvacrol. J Food Qual Hazard Control 7:136–141. https://doi.org/10.18502/JFQHC.7.3.4145

    Article  CAS  Google Scholar 

  48. Zhang J, Tan W, Li Q et al (2020) Synthesis and characterization of N, N, N-trimethyl-O-(ureidopyridinium)acetyl chitosan derivatives with antioxidant and antifungal activities. Mar Drugs 18:1–17. https://doi.org/10.3390/md18030163

    Article  CAS  Google Scholar 

  49. Bailore NN, Balladka SK, Doddapaneni SJDS, Mudiyaru MS (2021) Fabrication of environmentally compatible biopolymer films of pullulan/piscean collagen/ZnO nanocomposite and their antifungal activity. J Polym Environ 29:1192–1201. https://doi.org/10.1007/s10924-020-01953-y

    Article  CAS  Google Scholar 

  50. Pinto L, Bonifacio MA, de Giglio E et al (2021) Biopolymer hybrid materials: development, characterization, and food packaging applications. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2021.100676

    Article  Google Scholar 

  51. FAO (2019) Food and agriculture organization of the United Nations statistics. https://www.fao.org/faostat/en/#data/QCL. Accessed 14 Dec 2021

  52. Vasile C, Baican M (2021) Progresses in food packaging, food quality, and safety—Controlled-release antioxidant and/or antimicrobial packaging. Molecules. https://doi.org/10.3390/molecules26051263

    Article  PubMed  PubMed Central  Google Scholar 

  53. Madhumitha G, Fowsiya J, Mohana Roopan S, Thakur VK (2018) Recent advances in starch–clay nanocomposites. Int J Polym Anal Charact 23:331–345. https://doi.org/10.1080/1023666X.2018.1447260

    Article  CAS  Google Scholar 

  54. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. https://doi.org/10.1023/A:1021013921916

    Article  CAS  Google Scholar 

  55. López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP et al (2015) Physicochemical and antioxidant properties of chitosan films incorporated with cinnamon oil. Int J Polym Sci 2015:1–8. https://doi.org/10.1155/2015/974506

    Article  CAS  Google Scholar 

  56. Avelelas F, Horta A, Pinto LFV et al (2019) Antifungal and antioxidant properties of chitosan polymers obtained from nontraditional polybius henslowii sources. Mar Drugs 17:239. https://doi.org/10.3390/md17040239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vargas M, Sánchez-González L, Cháfer M et al (2012) Edible chitosan coatings for fresh and minimally processed foods. Emerging food packaging technologies. Elsevier, Amsterdam, pp 66–95

    Chapter  Google Scholar 

  58. Muñoz-Bonilla A, Echeverria C, Sonseca Á et al (2019) Bio-based polymers with antimicrobial properties towards sustainable development. Materials 12:641. https://doi.org/10.3390/ma12040641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zając M, Jamróz E, Guzik P et al (2021) Active biopolymer films based on furcellaran, whey protein isolate and Borago officinalis extract: characterization and application in smoked pork ham production. J Sci Food Agric 101:2884–2891. https://doi.org/10.1002/jsfa.10920

    Article  CAS  PubMed  Google Scholar 

  60. Naqash F, Masoodi FA, Ayob O, Parvez S (2021) Effect of active pectin edible coatings on the safety and quality of fresh-cut apple. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.15059

    Article  Google Scholar 

  61. Koshy RR, Koshy JT, Mary SK et al (2021) Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control. https://doi.org/10.1016/j.foodcont.2021.108039

    Article  Google Scholar 

  62. Priyadarshi R, Kim S-M, Rhim J-W (2021) Pectin/pullulan blend films for food packaging: effect of blending ratio. Food Chem. https://doi.org/10.1016/j.foodchem.2021.129022

    Article  PubMed  Google Scholar 

  63. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  64. Fonseca-García A, Caicedo C, Jiménez-Regalado EJ et al (2021) Effects of poloxamer content and storage time of biodegradable starch-chitosan films on its thermal, structural, mechanical, and morphological properties. Polymers (Basel). https://doi.org/10.3390/polym13142341

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sobral PJ, Amaral D (2000) Influência da espessura de biofilmes feitos à base de proteínas miofibrilares sobre suas propriedades funcionais. Pesq Agropecu Bras 35:1251–1259. https://doi.org/10.1590/S0100-204X2000000600022

    Article  Google Scholar 

  66. Dai L, Zhang J, Cheng F (2020) Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem 311:125891. https://doi.org/10.1016/j.foodchem.2019.125891

    Article  CAS  PubMed  Google Scholar 

  67. Alizadeh-Sani M, Mohammadian E, McClements DJJ (2020) Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO2 and essential oil: application for preservation of refrigerated meat. Food Chem. https://doi.org/10.1016/j.foodchem.2020.126782

    Article  PubMed  Google Scholar 

  68. Moreira BR, Pereira-Júnior MA, Fernandes KF, Batista KA (2020) An ecofriendly edible coating using cashew gum polysaccharide and polyvinyl alcohol. Food Biosci. https://doi.org/10.1016/j.fbio.2020.100722

    Article  Google Scholar 

  69. Wu H, Lei Y, Zhu R et al (2019) Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocolloids 90:41–49. https://doi.org/10.1016/j.foodhyd.2018.12.016

    Article  CAS  Google Scholar 

  70. Maan AA, Reiad Ahmed ZF, Iqbal Khan MK et al (2021) Aloe vera gel, an excellent base material for edible films and coatings. Trends Food Sci Technol 116:329–341. https://doi.org/10.1016/j.tifs.2021.07.035

    Article  CAS  Google Scholar 

  71. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A (2021) Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ Chem Lett 19:1715–1735. https://doi.org/10.1007/s10311-020-01126-2

    Article  CAS  PubMed  Google Scholar 

  72. Kumar S, Shukla A, Baul PP et al (2018) Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life 16:178–184. https://doi.org/10.1016/j.fpsl.2018.03.008

    Article  Google Scholar 

  73. Kanatt SR (2020) Irradiation as a tool for modifying tapioca starch and development of an active food packaging film with irradiated starch. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2020.108873

    Article  Google Scholar 

  74. Siracusa V, Blanco I (2020) Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly(ethylene terephthalate) (Bio-PET): recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers (Basel) 12:1641. https://doi.org/10.3390/polym12081641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vieira ACF, de Matos FJ, Menezes NMC et al (2020) Active coatings based on hydroxypropyl methylcellulose and silver nanoparticles to extend the papaya (Carica papaya L.) shelf life. Int J Biol Macromol 164:489–498. https://doi.org/10.1016/j.ijbiomac.2020.07.130

    Article  CAS  PubMed  Google Scholar 

  76. de Fonseca J, PabónNandi NYLLG et al (2021) Gelatin-TiO2-coated expanded polyethylene foam nets as ethylene scavengers for fruit postharvest application. Postharvest Biol Technol 180:111602. https://doi.org/10.1016/j.postharvbio.2021.111602

    Article  CAS  Google Scholar 

  77. Sousa FF, Pinsetta Junior JS, Oliveira KTEF et al (2021) Conservation of ‘Palmer’ mango with an edible coating of hydroxypropyl methylcellulose and beeswax. Food Chem 346:128925. https://doi.org/10.1016/j.foodchem.2020.128925

    Article  CAS  PubMed  Google Scholar 

  78. Azadbakht E, Maghsoudlou Y, Khomiri M, Kashiri M (2018) Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: potential as an antimicrobial carrier for packaging of sliced sausage. Food Packag Shelf Life 17:65–72. https://doi.org/10.1016/j.fpsl.2018.03.007

    Article  Google Scholar 

  79. López de Dicastillo C, Bustos F, Guarda A, Galotto MJ (2016) Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocoll 60:335–344. https://doi.org/10.1016/j.foodhyd.2016.03.020

    Article  CAS  Google Scholar 

  80. Liang T, Sun G, Cao L et al (2019) A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll 87:858–868. https://doi.org/10.1016/j.foodhyd.2018.08.028

    Article  CAS  Google Scholar 

  81. Yong H, Wang X, Bai R et al (2019) Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll 90:216–224. https://doi.org/10.1016/j.foodhyd.2018.12.015

    Article  CAS  Google Scholar 

  82. Pires JRA, de Souza VGL, Fernando AL (2018) Chitosan/montmorillonite bionanocomposites incorporated with rosemary and ginger essential oil as packaging for fresh poultry meat. Food Packag Shelf Life 17:142–149. https://doi.org/10.1016/j.fpsl.2018.06.011

    Article  Google Scholar 

  83. Rahmani B, Hosseini H, Khani M et al (2017) Development and characterisation of chitosan or alginate-coated low density polyethylene films containing Satureja hortensis extract. Int J Biol Macromol 105:121–130. https://doi.org/10.1016/j.ijbiomac.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Liu Q, Rempel C (2016) Processing and characteristics of canola protein-based biodegradable packaging: a review. Crit Rev Food Sci Nutr 58:1–11. https://doi.org/10.1080/10408398.2016.1193463

    Article  CAS  Google Scholar 

  85. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  PubMed  Google Scholar 

  86. Becerril R, Nerín C, Silva F (2020) Encapsulation systems for antimicrobial food packaging components: an update. Molecules 25:1134. https://doi.org/10.3390/molecules25051134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Salarbashi D, Tafaghodi M, Bazzaz BSF (2018) Soluble soybean polysaccharide/TiO2 bionanocomposite film for food application. Carbohyd Polym 186:384–393. https://doi.org/10.1016/j.carbpol.2017.12.081

    Article  CAS  Google Scholar 

  88. Shaili T, Abdorreza MN, Fariborz N (2015) Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohyd Polym 134:726–731. https://doi.org/10.1016/j.carbpol.2015.08.073

    Article  CAS  Google Scholar 

  89. Othman SH, Othman NFL, Shapi’i RA et al (2021) Corn starch/chitosan nanoparticles/thymol bio-nanocomposite films for potential food packaging applications. Polymers (Basel) 13:1–19. https://doi.org/10.3390/polym13030390

    Article  CAS  Google Scholar 

  90. Zhao Y, Sun H, Yang B et al (2021) Enhancement of mechanical and barrier property of hemicellulose film via crosslinking with sodium trimetaphosphate. Polymers (Basel). https://doi.org/10.3390/polym13060927

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vimala Bharathi SK, Maria Leena M, Moses JA, Anandharamakrishnan C (2020) Zein-based anti-browning cling wraps for fresh-cut apple slices. Int J Food Sci Technol 55:1238–1245. https://doi.org/10.1111/ijfs.14401

    Article  CAS  Google Scholar 

  92. Bharathi SKV, Leena MM, Moses JA, Anandharamakrishnan C (2020) Nanofibre-based bilayer biopolymer films: enhancement of antioxidant activity and potential for food packaging application. Int J Food Sci Technol 55:1477–1484. https://doi.org/10.1111/ijfs.14492

    Article  CAS  Google Scholar 

  93. Faisal M, Mousa MA, ElHussieny A et al (2021) Experimental investigation of innovative active packaging biofilms using electrical impedance spectroscopy. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.129648

    Article  Google Scholar 

  94. Halim ALA, Kamari A, Phillip E (2018) Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int J Biol Macromol 120:1119–1126. https://doi.org/10.1016/j.ijbiomac.2018.08.169

    Article  CAS  PubMed  Google Scholar 

  95. He Q, Huang Y, Lin B, Wang S (2017) A nanocomposite film fabricated with simultaneously extracted protein-polysaccharide from a marine alga and TiO2 nanoparticles. J Appl Phycol 29:1541–1552. https://doi.org/10.1007/s10811-016-1030-1

    Article  CAS  Google Scholar 

  96. Kowsalya E, MosaChristas K, Balashanmugam P et al (2021) Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications. J Food Process Eng. https://doi.org/10.1111/jfpe.13641

    Article  Google Scholar 

  97. Naqash F, Masoodi FA, Ayob O, Parvez S (2022) Effect of active pectin edible coatings on the safety and quality of fresh-cut apple. Int J Food Sci Technol 57:57–66. https://doi.org/10.1111/ijfs.15059

    Article  CAS  Google Scholar 

  98. Pavinatto A, de Almeida Mattos AV, Malpass ACG et al (2020) Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int J Biol Macromol 151:1004–1011. https://doi.org/10.1016/j.ijbiomac.2019.11.076

    Article  CAS  PubMed  Google Scholar 

  99. Risyon NP, Othman SH, Basha RK, Talib RA (2020) Characterization of polylactic acid/halloysite nanotubes bionanocomposite films for food packaging. Food Packag Shelf Life 23:100450. https://doi.org/10.1016/j.fpsl.2019.100450

    Article  Google Scholar 

  100. Saravanakumar K, Sathiyaseelan A, Mariadoss AVA et al (2020) Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int J Biol Macromol 153:207–214. https://doi.org/10.1016/j.ijbiomac.2020.02.250

    Article  CAS  PubMed  Google Scholar 

  101. Shapi’i RA, Othman SH, Nordin N et al (2020) Antimicrobial properties of starch films incorporated with chitosan nanoparticles: In vitro and in vivo evaluation. Carbohyd Polym 230:115602. https://doi.org/10.1016/j.carbpol.2019.115602

    Article  CAS  Google Scholar 

  102. Vähä-Nissi M, Koivula HM, Räisänen HM et al (2017) Cellulose nanofibrils in biobased multilayer films for food packaging. J Appl Polym Sci. https://doi.org/10.1002/app.44830

    Article  Google Scholar 

  103. Zhao Y, Sun H, Yang B et al (2021) Enhancement of mechanical and barrier property of hemicellulose film via crosslinking with sodium trimetaphosphate. Polymers (Basel) 13:927. https://doi.org/10.3390/polym13060927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cardoso LG, Pereira Santos JC, Camilloto GP et al (2017) Development of active films poly (butylene adipate co-terephthalate)–PBAT incorporated with oregano essential oil and application in fish fillet preservation. Ind Crops Prod 108:388–397. https://doi.org/10.1016/j.indcrop.2017.06.058

    Article  CAS  Google Scholar 

  105. Fiore A, Park S, Volpe S et al (2021) Active packaging based on PLA and chitosan-caseinate enriched rosemary essential oil coating for fresh minced chicken breast application. Food Packag Shelf Life 29:100708. https://doi.org/10.1016/j.fpsl.2021.100708

    Article  CAS  Google Scholar 

  106. Gallego M, Arnal M, Talens P et al (2020) Effect of gelatin coating enriched with antioxidant tomato by-products on the quality of pork meat. Polymers (Basel). https://doi.org/10.3390/POLYM12051032

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hassan AHA, Cutter CN (2020) Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce foodborne pathogens associated with muscle foods. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2020.108519

    Article  PubMed  Google Scholar 

  108. Kamkar A, Molaee-aghaee E, Khanjari A et al (2021) Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2021.109071

    Article  PubMed  Google Scholar 

  109. Khah MD, Ghanbarzadeh B, Roufegarinejad Nezhad L, Ostadrahimi A (2021) Effects of virgin olive oil and grape seed oil on physicochemical and antimicrobial properties of pectin-gelatin blend emulsified films. Int J Biol Macromol 171:262–274. https://doi.org/10.1016/j.ijbiomac.2021.01.020

    Article  CAS  PubMed  Google Scholar 

  110. Martiny TR, Pacheco BS, Pereira CMP et al (2020) A novel biodegradable film based on κ-carrageenan activated with olive leaves extract. Food Sci Nutr 8:3147–3156. https://doi.org/10.1002/fsn3.1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Souza V, Pires J, Vieira É et al (2018) Shelf life assessment of fresh poultry meat packaged in novel bionanocomposite of chitosan/montmorillonite incorporated with ginger essential oil. Coatings 8:177. https://doi.org/10.3390/coatings8050177

    Article  CAS  Google Scholar 

  112. Tkaczewska J, Kulawik P, Jamróz E et al (2021) One- and double-layered furcellaran/carp skin gelatin hydrolysate film system with antioxidant peptide as an innovative packaging for perishable foods products. Food Chem 351:129347. https://doi.org/10.1016/j.foodchem.2021.129347

    Article  CAS  PubMed  Google Scholar 

  113. Wang C, Chang T, Dong S et al (2020) Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat. Food Chem 332:127375. https://doi.org/10.1016/j.foodchem.2020.127375

    Article  CAS  PubMed  Google Scholar 

  114. Xavier LO, Sganzerla WG, Rosa GB et al (2021) Chitosan packaging functionalized with Cinnamodendron dinisii essential oil loaded zein: a proposal for meat conservation. Int J Biol Macromol 169:183–193. https://doi.org/10.1016/j.ijbiomac.2020.12.093

    Article  CAS  PubMed  Google Scholar 

  115. Xie Y, Niu X, Yang J et al (2020) Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int J Biol Macromol 150:480–491. https://doi.org/10.1016/j.ijbiomac.2020.01.291

    Article  CAS  PubMed  Google Scholar 

  116. Yang Z, Zhai X, Zou X et al (2021) Bilayer pH-sensitive colorimetric films with light-blocking ability and electrochemical writing property: application in monitoring crucian spoilage in smart packaging. Food Chem 336:127634. https://doi.org/10.1016/j.foodchem.2020.127634

    Article  CAS  PubMed  Google Scholar 

  117. Yu Z, Alsammarraie FK, Nayigiziki FX et al (2017) Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films. Food Res Int 99:166–172. https://doi.org/10.1016/j.foodres.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  118. Zhai X, Zou X, Shi J et al (2020) Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sens Actuators, B Chem 302:127130. https://doi.org/10.1016/j.snb.2019.127130

    Article  CAS  Google Scholar 

  119. Al-Moghazy M, El-sayed HS, Salama HH, Nada AA (2021) Edible packaging coating of encapsulated thyme essential oil in liposomal chitosan emulsions to improve the shelf life of Karish cheese. Food Biosci 43:101230. https://doi.org/10.1016/j.fbio.2021.101230

    Article  CAS  Google Scholar 

  120. Borah PP, Das P, Badwaik LS (2017) Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrason Sonochem 36:11–19. https://doi.org/10.1016/j.ultsonch.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  121. Kashiri M, López-Carballo G, Hernández-Muñoz P, Gavara R (2019) Antimicrobial packaging based on a LAE containing zein coating to control foodborne pathogens in chicken soup. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2019.108272

    Article  PubMed  Google Scholar 

  122. Korotkiy IA, Korotkaya EV, Rasshchepkin AN, Sakhabutdinova GF (2020) Improved freezing technology of minced meat products in biopolymer packaging material. ARPN J Eng Appl Sci 15:2547–2554

    CAS  Google Scholar 

  123. Lima AEF, Andrade PL, de Lemos TLG et al (2021) Development and application of galactomannan and essential oil-based edible coatings applied to “coalho” cheese. J Food Process Preserv. https://doi.org/10.1111/jfpp.15091

    Article  Google Scholar 

  124. Lomate GB, Dandi B, Mishra S (2018) Development of antimicrobial LDPE/Cu nanocomposite food packaging film for extended shelf life of peda. Food Packag Shelf Life 16:211–219. https://doi.org/10.1016/j.fpsl.2018.04.001

    Article  Google Scholar 

  125. Nair SB, Alummoottil NJ, Moothandasserry SS (2017) Chitosan-konjac glucomannan-cassava starch-nanosilver composite films with moisture resistant and antimicrobial properties for food-packaging applications. Starch Stärke 69:1600210. https://doi.org/10.1002/star.201600210

    Article  CAS  Google Scholar 

  126. Panariello L, Coltelli M-B, Buchignani M, Lazzeri A (2019) Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. Eur Polymer J 113:328–339. https://doi.org/10.1016/j.eurpolymj.2019.02.004

    Article  CAS  Google Scholar 

  127. Pluta-Kubica A, Jamróz E, Kawecka A et al (2020) Active edible furcellaran/whey protein films with yerba mate and white tea extracts: preparation, characterization and its application to fresh soft rennet-curd cheese. Int J Biol Macromol 155:1307–1316. https://doi.org/10.1016/j.ijbiomac.2019.11.102

    Article  CAS  PubMed  Google Scholar 

  128. Shankar S, Rhim J-W (2018) Antimicrobial wrapping paper coated with a ternary blend of carbohydrates (alginate, carboxymethyl cellulose, carrageenan) and grapefruit seed extract. Carbohyd Polym 196:92–101. https://doi.org/10.1016/j.carbpol.2018.04.128

    Article  CAS  Google Scholar 

  129. Tawakkal ISMA, Cran MJ, Bigger SW (2017) Effect of poly(Lactic Acid)/kenaf composites incorporated with thymol on the antimicrobial activity of processed meat. J Food Process Preserv 41:e13145. https://doi.org/10.1111/jfpp.13145

    Article  CAS  Google Scholar 

  130. Ubeda S, Aznar M, Nerín C, Kabir A (2021) Fabric phase sorptive extraction for specific migration analysis of oligomers from biopolymers. Talanta 233:122603. https://doi.org/10.1016/j.talanta.2021.122603

    Article  CAS  PubMed  Google Scholar 

  131. Vilarinho F, Andrade M, Buonocore GG et al (2018) Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly(lactic acid) film. Eur Polymer J 98:362–367. https://doi.org/10.1016/j.eurpolymj.2017.11.034

    Article  CAS  Google Scholar 

  132. Farias YB, Coutinho AK, Tupuna-Yerovi DS, de Oliveira Rios A (2021) Incorporation of norbixin in biodegradable alginate films crosslinked with Ca2+: Pro-oxidant action. J Appl Polym Sci 138:49876. https://doi.org/10.1002/app.49876

    Article  CAS  Google Scholar 

  133. Hossain F, Follett P, Salmieri S et al (2019) Synergistic effects of nanocomposite films containing essential oil nanoemulsions in combination with ionizing radiation for control of rice weevil sitophilus oryzae in stored grains. J Food Sci 84:1439–1446. https://doi.org/10.1111/1750-3841.14603

    Article  CAS  PubMed  Google Scholar 

  134. Huang X, Luo X, Liu L et al (2020) Formation mechanism of egg white protein/κ-Carrageenan composite film and its application to oil packaging. Food Hydrocoll 105:105780. https://doi.org/10.1016/j.foodhyd.2020.105780

    Article  Google Scholar 

  135. Minh NPP, Buu LTT, Trang THPHP (2019) Effect of chitosan-lemongrass essential oil-xanthan gum coating on the shelf life of white mushroom (Pleurotus ostreatus). J Global Pharma Technol 11:519–527

    Google Scholar 

  136. Rodsamran P, Sothornvit R (2018) Carboxymethyl cellulose from renewable rice stubble incorporated with Thai rice grass extract as a bioactive packaging film for green tea. J Food Process Preserv 42:e13762. https://doi.org/10.1111/jfpp.13762

    Article  CAS  Google Scholar 

  137. da Silva JBA, Santana JS, de Almeida LA et al (2019) PBAT/TPS-nanowhiskers blends preparation and application as food packaging. J Appl Polym Sci. https://doi.org/10.1002/app.47699

    Article  Google Scholar 

  138. Kabir E, Kaur R, Lee J et al (2020) Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J Clean Prod 258:120536. https://doi.org/10.1016/J.JCLEPRO.2020.120536

    Article  CAS  Google Scholar 

  139. Arrieta MP, Peponi L, López D et al (2017) An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. Food packaging. Elsevier, Amsterdam, pp 391–424

    Chapter  Google Scholar 

  140. Pang MM, Choo HL, Buys YF (2020) Plastics in food packaging. In: Reference module in materials science and materials engineering. Amsterdam: Elsevier

  141. Nabi I, Bacha AUR, Ahmad F, Zhang L (2021) Application of titanium dioxide for the photocatalytic degradation of macro- and micro-plastics: a review. J Environ Chem Eng 9:105964. https://doi.org/10.1016/J.JECE.2021.105964

    Article  CAS  Google Scholar 

  142. Chen Y, Awasthi AK, Wei F et al (2021) Single-use plastics: production, usage, disposal, and adverse impacts. Sci Total Environ 752:141772. https://doi.org/10.1016/J.SCITOTENV.2020.141772

    Article  CAS  PubMed  Google Scholar 

  143. Hahladakis JN, Velis CA, Weber R et al (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  144. Ingrao C, Gigli M, Siracusa V (2017) An attributional life cycle assessment application experience to highlight environmental hotspots in the production of foamy polylactic acid trays for fresh-food packaging usage. J Clean Prod 150:93–103. https://doi.org/10.1016/j.jclepro.2017.03.007

    Article  CAS  Google Scholar 

  145. Dilkes-Hoffman LS, Lane JL, Grant T et al (2018) Environmental impact of biodegradable food packaging when considering food waste. J Clean Prod 180:325–334. https://doi.org/10.1016/j.jclepro.2018.01.169

    Article  CAS  Google Scholar 

  146. Shahid M, Shahid-ul-Islam MF (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331. https://doi.org/10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES (Higher Level Personal Development Coordination, in loose translation) for the support with the Portal de Periódicos.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AGP: conceptualization, methodology, data curation, writing-original draft preparation, investigation, validation, formal analysis. HPO: writing-original draft preparation, investigation, validation, formal analysis. MPC: writing-original draft preparation, formal analysis. DFMN: conceptualization, methodology, data curation, writing-original draft preparation, investigation, validation, formal analysis, resources, supervision, project administration.

Corresponding author

Correspondence to David Fernando de Morais Neri.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parente, A.G., de Oliveira, H.P., Cabrera, M.P. et al. Bio-based polymer films with potential for packaging applications: a systematic review of the main types tested on food. Polym. Bull. 80, 4689–4717 (2023). https://doi.org/10.1007/s00289-022-04332-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04332-w

Keywords

Navigation