Skip to main content

Advertisement

Log in

Chitosan conjugated silver nanoparticles: the versatile antibacterial agents

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan is one of the most environmental purification functional natural polysaccharides that can successfully prohibit the reproduction and growth of harmful Gram-negative and Gram-positive bacterial pathogens and also control the toxic pollutants. Nowadays, pathogenic microorganisms have multidrug resistance to antimicrobial drugs; therefore, successful identification and management of contagious disorders has become a major impediment. For combating the multidrug resistances in microorganisms’ the latest innovations in nanotechnology-based medications have released novel prospects. More attention has been paid to the use of silver nanoparticles (AgNPs) as an effective antibacterial agent. Silver nanoparticles have been used to prevent and cure numerous contagions and disorders due to their strong bactericidal effects. Silver nanoparticles have high bactericidal and antimicrobial actions against methicillin-resistant bacterial strains, e.g., Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, etc. The formation of nanoparticles from chitosan sources has been paid pronounced consideration due to hydrophilic characteristics, biodegradability, and biocompatibility. The first part of the literature highlights a general mechanism of antibacterial activity of chitosan, whereas the second part focus on the antibacterial activity of chitosan conjugated silver nanoparticles against broad-spectrum Gram-negative and Gram-positive microbial pathogens. Chitosan is selected as a protective mediator in the formation of silver nanoparticles because chitosan act as a stabilizing agent as well as the capability to sorb silver ions via chelation and ion exchange mechanisms. Chitosan conjugated silver-nanocomposites were suggested as coatings for food packaging, biomedical-engineering as well as wound-dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CH:

Chitosan

NPs:

Nanoparticles

Ag NPs:

Silver nanoparticles

ROS:

Reactive oxygen species

OH:

Hydroxyl group

TEM:

Transmission electron microscopic

MDR:

Multiple drug resistant

References

  1. Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2019) Biomedical applications of chitosan electrospun nanofibers as a green polymer-review. Carbohydr poly 207:588–600

    Article  CAS  Google Scholar 

  2. Zhao X, Zhang J, Zhu KY (2019) Chito-protein matrices in arthropod exoskeletons and peritrophic matrices. Springer, Extracellular Sugar-Based Biopolymers Matrices, pp 3–56

    Google Scholar 

  3. Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu J, Gomez-Pinedo U, Mateos-Díaz JC (2020) Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front Bioeng Biotechnol 8:389

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 10:97–109

    Article  Google Scholar 

  5. Yadav MK, Pokhrel S, Yadav PN (2020) Novel chitosan derivatives of 2-imidazolecarboxaldehyde and 2-thiophenecarboxaldehyde and their antibacterial activity. J Macromol Sci Part A 57(10):703–710

    Article  CAS  Google Scholar 

  6. Madni A, Kousar R, Naeem N, Wahid F (2021) Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J Bioresour Bioprod 6(1):11–25

    Article  CAS  Google Scholar 

  7. Yang L, Wang Q, Peng L, Yue H, Zhang Z (2015) Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold. Mol Med Rep 12(2):2343–2347

    Article  CAS  PubMed  Google Scholar 

  8. Agrawal P, Singh RP, Kumari L (2017) TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mat Sci Engin 74:167–176

    Article  CAS  Google Scholar 

  9. Arif U, Haider S, Haider A (2019) Biocompatible polymers and their potential biomedical applications: a review. Curr pharm Des 25(34):3608–3619

    Article  CAS  PubMed  Google Scholar 

  10. Davoodbasha M, Kim SC, Lee SY, Kim JW (2016) The facile synthesis of chitosan-based silver nano-biocomposites via a solution plasma process and their potential antimicrobial efficacy. Arch Biochem Biophy 605:49–58

    Article  CAS  Google Scholar 

  11. Kabanov VL, Novinyuk LV (2020) Chitosan application in food technology: a review of rescent advances. Food Syst 3(1):10–15

    Article  Google Scholar 

  12. Marques J, Valle-Delgado JJ, Urbán P (2017) Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine: Nanotechnol Biol Med 13(2):515–525

    Article  CAS  Google Scholar 

  13. Al Shaqsi NH, Al Hoqani HA, Hossain MA, Al Sibani MA (2020) Optimization of the demineralization process for the extraction of chitin from Omani Portunidae segnis. Biochem Biophys Rep 23:100779

    PubMed  PubMed Central  Google Scholar 

  14. Xia GX, Wu YM, Bi YF (2021) Antimicrobial properties and application of polysaccharides and their derivatives. Chin J Poly Sci 39(2):133–146

    Article  CAS  Google Scholar 

  15. Abdel-Razek N (2019) Antimicrobial activities of chitosan nanoparticles against pathogenic microorganisms in nile tilapia. Oreochromis niloticus Aquac Int 27(5):1315–1330

    Article  CAS  Google Scholar 

  16. Prabha AR, Sivakumar K (2017) Antimicrobial activity of chitosan extracted from prawn shell. Ind J Appl Microbiol 20(1):1–7

    Article  Google Scholar 

  17. Triunfo M, Tafi E, Guarnieri A (2021) Insect chitin-based nanomaterials for innovative cosmetics and cosmeceuticals. Cosmet 8(2):40

    Article  CAS  Google Scholar 

  18. Rodin A, Privolnev V, Barsukov A (2018) Therapeutic potential of sulfathiazole silver for topical treatment of wound infection. Hosp Replac Technol: Ambul Surg 1–2:42–51

    Google Scholar 

  19. Divya K, Vijayan S, George TK, Jisha M (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers and Poly 18(2):221–230

    Article  CAS  Google Scholar 

  20. Rakkhumkaew N, Pengsuk C (2018) Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread. Food Sci Biotechnol 27(4):1201–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM (2021) Antimicrobial activity of chemically and biologically treated chitosan prepared from black soldier fly (hermetia illucens) pupal shell waste. Microorg 8(9):1173

    Google Scholar 

  22. Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475

    Article  CAS  PubMed  Google Scholar 

  23. Yu JY, Ko JA, Park HJ, Kim HW (2020) Application of nanochitosan in food industry: a review. Food Sci Indust 53(1):56–68

    Google Scholar 

  24. Ke CL, Deng FS, Chuang CY, Lin CH (2021) Antimicrobial actions and applications of chitosan. Polymers 13(6):904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nhung LTT, Kim IY, Yoon YS (2020) Quaternized chitosan-based anion exchange membrane composited with quaternized poly (vinylbenzyl chloride)/polysulfone blend. Polym 12(11):2714

    Article  CAS  Google Scholar 

  26. Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Musta V (2021) Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int J Mol Sci 22(14):7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Zhuang S (2020) Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Europ Poly J 138:109984

    Article  CAS  Google Scholar 

  28. Butola BS (2019) Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int J Biol Macromol 121:905–912

    Article  PubMed  Google Scholar 

  29. Li XF, Feng XQ, Yang S, Fu GQ, Wang TP, Su ZX (2010) Chitosan kills escherichia coli through damage to be of cell membrane mechanism. Carbohydr Poly 79(3):493–499

    Article  CAS  Google Scholar 

  30. Chien RC, Yen MT, Mau JL (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr poly 138:259–264

    Article  CAS  Google Scholar 

  31. Sahariah P, Cibor D, Zielińska D, Hjálmarsdóttir MÁ, Stawski D, Másson M (2019) The effect of molecular weight on the antibacterial activity of N, N, N-trimethyl chitosan (TMC). Int J Mol Sci 20(7):1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alarfaj AA (2019) Antibacterial effect of chitosan nanoparticles against food spoilage bacteria. J Pure Appl Microbiol 13(2):1273–1278

    Article  Google Scholar 

  33. No HK, Prinyawiwatkul W (2009) Stability of chitosan powder during long-term storage at room temperature. J Agr Food Chem 57(18):8434–8438

    Article  CAS  Google Scholar 

  34. Confederat LG, Tuchilus CG, Dragan M, Sha’at M, Dragostin OM, (2021) Preparation and antimicrobial activity of chitosan and its derivatives: a concise review. Mol 26(12):3694

    Article  CAS  Google Scholar 

  35. Kamkar A, Molaee-Aghaee E, Khanjari A, Akhondzadeh-Basti A, Noudoost B, Shariatifar N, Sani MA, Soleimani M (2021) Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. Int J Food Microbiol 342:109071

    Article  CAS  PubMed  Google Scholar 

  36. Zmejkoski DZ, Marković ZM, Budimir MD, Zdravković NM, Trišić DD, Bugárová N, Danko M, Kozyrovska NO, Špitalský Z, Kleinová A, Kuzman SB (2021) Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater Sci Engin C 122:111925

    Article  CAS  Google Scholar 

  37. Kong M, Chen XG, Xue YP (2008) Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Front Mat Sci China 2(2):214–220

    Article  Google Scholar 

  38. Silpa K, Reshmi V (2021) Extraction of chitosan from shrimp shell and its application as a bioactive edible coating for preservation of fish Uttar Pradesh J Zoo 10–120

  39. Begines B, Ortiz T, Pérez-Aranda M (2020) Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomater 10(7):1403

    Article  CAS  Google Scholar 

  40. Alqahtani F, Aleanizy F, El Tahir E (2020) Antibacterial activity of chitosan nanoparticles against pathogenic N gonorrhoea Internat J. Nanomed 15:7877

    Article  CAS  Google Scholar 

  41. Yanat M, Schroën K (2021) Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React Funct Poly 8:104849

    Article  Google Scholar 

  42. Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR (2018) Parameters influencing the size of chitosan-TPP nano-and microparticles. Sci Rep 8(1):1–11

    Article  Google Scholar 

  43. Mazzotta E, De Benedittis S, Qualtieri A, Muzzalupo R (2020) Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharm 12(1):26

    CAS  Google Scholar 

  44. Kalaivani R, Maruthupandy M, Muneeswaran T (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35

    Article  Google Scholar 

  45. Dara PK, Mahadevan R, Digita P (2020) Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): in vitro studies on antioxidant and antibacterial applications. SN Appl Sci 2(4):1–12

    Article  Google Scholar 

  46. Douglas-Gallardo OA, Christensen CA, Strumia MC, Pérez MA, Gomez CG (2019) Physico-chemistry of a successful micro-reactor: random coils of chitosan backbones used to synthesize size-controlled silver nanoparticles. Carbohydr Poly 225:115241

    Article  Google Scholar 

  47. Suresh TC, Poonguzhali TV, Anuradha V, Ramesh B, Suresh G (2021) Aqueous extract of turbinaria conoides (J. Agardh) Kützing mediated fabrication of silver nanoparticles used against bacteria associated with diabetic foot ulcer. Mater Proc 43:3038–3043

    Google Scholar 

  48. Motelica L, Ficai D, Oprea OC, Ficai A, Ene VL, Vasile BS, Andronescu E, Holban AM (2021) Antibacterial biodegradable films based on alginate with silver nanoparticles and lemongrass essential oil–innovative packaging for cheese. Nanomater 11(9):2377

    Article  CAS  Google Scholar 

  49. Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H (2020) Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics 10(20):8996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abbasi E, Milani M, Fekri Aval S (2016) Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180

    CAS  PubMed  Google Scholar 

  51. Sheth Y, Dharaskar S, Khalid M, Sonawane S (2021) An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: a review. Sustain Energy Technol Assess 43:100951

    Google Scholar 

  52. Shah A, Hussain I, Murtaza G (2018) Chemical synthesis and characterization of chitosan/silver nanocomposites films and their potential antibacterial activity. Int J Biol Macromol 116:520–529

    Article  CAS  PubMed  Google Scholar 

  53. Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B (2018) Sulfonated and sulfated chitosan derivatives for biomedical applications: a review. Carbohydr poly 202:382–396

    Article  CAS  Google Scholar 

  54. Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI (2020) Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J Pharmac Sci 15(6):661–684

    Google Scholar 

  55. González-Campos JB, Mota-Morales JD, Kumar S (2013) New insights into the bactericidal activity of chitosan-Ag bionanocomposite: the role of the electrical conductivity. Coll Surf B: Biointerfaces 111:741–746

    Article  Google Scholar 

  56. Gaviria J, Alcudia A, Begines B (2021) Synthesis and deposition of silver nanoparticles on porous titanium substrates for biomedical applications. Surf Coat Technol 406:126667

    Article  CAS  Google Scholar 

  57. Ahmad SA, Das SS, Khatoon A (2020) Bactericidal activity of silver nanoparticles: a mechanistic review. Mat Sci Energy Technol 6:21–28

    Google Scholar 

  58. Fatima F, Siddiqui S, Khan WA (2021) Nanoparticles as novel emerging therapeutic antibacterial agents in the antibiotics resistant era. Biol Trace Elem Res 199(7):2552–2564

    Article  CAS  PubMed  Google Scholar 

  59. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    Article  PubMed  PubMed Central  Google Scholar 

  60. Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomater 8(9):681

    Article  Google Scholar 

  61. Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, Devínsky F, Horáková R, Březina M, Opravil T (2021) Silver nanoparticles stabilized with phosphorus-containing heterocyclic surfactants: synthesis physico-chemical properties and biological activity determination. Nanomater 11(8):1883

    Article  Google Scholar 

  62. Thiruvengadam V, Bansod AV (2020) Characterization of silver nanoparticles synthesized using chemical method and its antibacterial property. Biointerface Res Appl Chem 10:7257–7264

    Article  CAS  Google Scholar 

  63. Abdelgawad AM, El-Naggar ME, Hudson SM, Rojas OJ (2017) Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. Int J Biol Macromol 94:96–105

    Article  CAS  PubMed  Google Scholar 

  64. Kawish M, Ullah F, Ali HS (2020) Bactericidal potentials of silver nanoparticles: novel aspects against multidrug resistance bacteria. Elsevier, Metal Nanopart Drug Deliv Diagnostic Applicat, pp 175–188

    Google Scholar 

  65. Durán N, Durán M, Bispo M, de Jesus AB, Seabra WJ, Fávaro GN (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnol Biol Med 12(3):789–799. https://doi.org/10.1016/j.nano.2015.11.016

    Article  CAS  Google Scholar 

  66. Boateng J, Catanzano O (2020) Silver and silver nanoparticle‐based antimicrobial dressings. Therapeutic Dressings Wound Heal Appl 157-184

  67. Yun’an Qing LC, Li R, Liu G (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311

    Article  Google Scholar 

  68. Hwang R, Mirshafiee V, Zhu Y, Xia T (2018) Current approaches for safer design of engineered nanomaterials. Ecotoxicol Environ Saf 166:294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Madkour LH (2019) Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. Pharm Sci Anal Res JM 2:180023

    Google Scholar 

  70. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Elsholz AK, Birk MS, Charpentier E, Turgay K (2017) Functional diversity of AAA+ protease complexes in Bacillus subtilis. Front Mol Biosci 4:44

    Article  PubMed  PubMed Central  Google Scholar 

  72. Agri U, Chaudhary P, Sharma A (2021) In vitro compatibility evaluation of agriusable nanochitosan on beneficial plant growth-promoting rhizobacteria and maize plant. Natl Acad Sci Lett 44(6):555–559. https://doi.org/10.1007/s40009-021-01047-w

    Article  CAS  Google Scholar 

  73. Omran B, Nassar H, Younis S (2019) Physiochemical properties of trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria. J Appl Microbiol 126(1):138–154

    Article  CAS  PubMed  Google Scholar 

  74. Raura N, Garg A, Arora A, Roma M (2020) Nanoparticle technology and its implications in endodontics: a review. Biomat Res 24(1):1–8

    Article  Google Scholar 

  75. Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomater 6(4):74

    Article  Google Scholar 

  76. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Adv 4(8):3974–3983

    Article  CAS  Google Scholar 

  77. Saleh N, Yousaf Z (2018) Tools and techniques for the optimized synthesis, reproducibility and scale up of desired nanoparticles from plant derived material and their role in pharmaceutical properties. Elsevier, Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology, pp 85–131

    Google Scholar 

  78. Liao S, Zhang Y, Pan X (2019) Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomed 14:1469

    Article  CAS  Google Scholar 

  79. Ansari MA, Khan HM, Khan A, Cameotra S, Alzohairy M (2015) Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Ind J Med Microbiol 33(1):101–109

    Article  CAS  Google Scholar 

  80. Shaikh S, Nazam N, Rizvi SMD (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci 20(10):2468

    Article  PubMed  PubMed Central  Google Scholar 

  81. Barkat MA, Harshita F, Beg S (2018) Silver nanoparticles and their antimicrobial applications. Curr Nanomed 8(3):215–224

    Article  CAS  Google Scholar 

  82. Mishra S, Sharma S, Javed MN (2019) Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharmaceut Nanotechnol 7(3):206–219

    Article  CAS  Google Scholar 

  83. Singh S, Singh PK, Suhail H (2020) AMP-activated protein kinase restricts Zika virus replication in endothelial cells by potentiating innate antiviral responses and inhibiting glycolysis. J of Immunol 204(7):1810–1824

    Article  CAS  Google Scholar 

  84. Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP (2020) Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 44(5):538–564

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21(7):836

    Article  PubMed  PubMed Central  Google Scholar 

  86. El Chakhtoura NG, Saade E, Iovleva A (2018) Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward ‘molecularly targeted’therapy. Exp Rev Anti-Infect Ther 16(2):89–110

    Article  Google Scholar 

  87. Baptista PV, McCusker MP, Carvalho A (2018) Nano-strategies to fight multidrug resistant bacteria “A Battle of the Titans.” Front Microbiol 9:1441

    Article  PubMed  PubMed Central  Google Scholar 

  88. Boyanova L (2018) Direct Gram staining and its various benefits in the diagnosis of bacterial infections. Postgrad Med 130(1):105–110

    Article  PubMed  Google Scholar 

  89. Das B, Sarkar C, Das D, Gupta A, Kalra A, Sahni S (2017) Telavancin: a novel semisynthetic lipoglycopeptide agent to counter the challenge of resistant gram-positive pathogens. Therap Advan Infect Disease 4(2):49–73

    Article  CAS  Google Scholar 

  90. Lupo A, Haenni M, Madec JY (2018) Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spec 6(3):6301

    Article  Google Scholar 

  91. Niño-Martínez N, Salas Orozco MF, Martínez-Castañón G-A, Torres Méndez F, Ruiz F (2019) Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci 20(11):2808

    Article  PubMed  PubMed Central  Google Scholar 

  92. Essawy E, Abdelfattah MS, El-Matbouli M, Saleh M (2021) Synergistic effect of biosynthesized silver nanoparticles and natural phenolic compounds against drug-resistant fish pathogens and their cytotoxicity: an in vitro study. Mar Drugs 19(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was not provided for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaukat Ali.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals accomplished by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumtaz, S., Ali, S., Mumtaz, S. et al. Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polym. Bull. 80, 4719–4736 (2023). https://doi.org/10.1007/s00289-022-04321-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04321-z

Keywords

Navigation