Skip to main content
Log in

Antimicrobial Properties and Application of Polysaccharides and Their Derivatives

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

With the quick emergence of antibiotic resistance and multi-drug resistant microbes, more and more attention has been paid to the development of new antimicrobial agents that have potential to take the challenge. Polysaccharides, as one of the major classes of biopolymers, were explored for their antimicrobial properties and applications, owing to their easy accessibility, biocompatibility and easy modification. Polysaccharides and their derivatives have variable demonstrations and applications as antimicrobial agents and antimicrobial biomaterials. A variety of polysaccharides, such as chitosan, dextran, hyaluronic acid, cellulose, other plant/animal-derived polysaccharides and their derivatives have been explored for antimicrobial applications. We expect that this review can summarize the important progress of this field and inspire new concepts, which will contribute to the development of novel antimicrobial agents in combating antibiotic resistance and drug-resistant antimicrobial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegranzi, B.; Nejad, S. B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet 2011, 377, 228–241.

    Google Scholar 

  2. Worthington, R. J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177–184.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown, E. D.; Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343.

    CAS  PubMed  Google Scholar 

  4. Tang, Q.; Song, P.; Li, J.; Kong, F.; Sun, L.; Xu, L. Control of antibiotic resistance in China must not be delayed: the current state of resistance and policy suggestions for the government, medical facilities, and patients. BioSci. Trends 2016, 10, 1–6.

    PubMed  Google Scholar 

  5. Imberty, A.; Varrot, A. Microbial recognition of human cell surface glycoconjugates. Curr. Opin. Struct. Biol. 2008, 18, 567–576.

    CAS  PubMed  Google Scholar 

  6. Bishop, J. R.; Gagneux, P. Evolution of carbohydrate antigens—microbial forces shaping host glycomes. Glycobiology 2007, 17, 23R–34R.

    CAS  PubMed  Google Scholar 

  7. Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr. Polym. 2018, 183, 91–101.

    CAS  PubMed  Google Scholar 

  8. Perinelli, D. R.; Fagioli, L.; Campana, R.; Lam, J. K. W.; Baffone, W.; Palmieri, G. F.; Casettari, L.; Bonacucina, G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur. J. Pharm. Sci. 2018, 117, 8–20.

    CAS  PubMed  Google Scholar 

  9. Li, Y. T.; Chen, B. J.; Wu, W. D.; Ge, K.; Wei, X. Y.; Kong, L. M.; Xie, Y. Y.; Gu, J. P.; Zhang, J. C.; Zhou, T. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme. Int. J. Biol. Macromol. 2018, 118, 1550–1557.

    CAS  PubMed  Google Scholar 

  10. No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002, 74, 65–72.

    CAS  PubMed  Google Scholar 

  11. Synowiecki, J.; Al-Khateeb, N. A. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. Nutr. 2003, 43, 145–171.

    CAS  PubMed  Google Scholar 

  12. Muzzarelli, R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009, 76, 167–182.

    CAS  Google Scholar 

  13. Peng, X. H.; Zhang, L. Surface fabrication of hollow microspheres from N -methylated chitosan cross-linked with gultaraldehyde. Langmuir 2005, 21, 1091–1095.

    CAS  PubMed  Google Scholar 

  14. Allan, C. R.; Hadwiger, L. A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol. 1979, 3, 285–287.

    CAS  Google Scholar 

  15. Palma-Guerrero, J.; Lopez-Jimenez, J. A.; Pérez-Berná, A. J.; Huang, I. C.; Jansson, H. B.; Salinas, J.; Villalaín, J.; Read, N. D.; Lopez-Llorca, L. V. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol. Microbiol. 2010, 75, 1021–1032.

    CAS  PubMed  Google Scholar 

  16. Young, D. H.; Kohle, H.; Kauss, H. Effect of chitosan on membrane permeability of suspension-cultured glycine max and phaseolus vulgaris cells. Plant Physiology 1982, 70, 1449–1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Helander, I. M.; Nurmiaho-Lassila, E. L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244.

    CAS  PubMed  Google Scholar 

  18. Muzzarelli, R.; Jeuniaux, C.; Gooday, G. W. Chitin in nature and technology. Springer US, New York, 1986.

    Google Scholar 

  19. Krajewska, B.; Wydro, P.; Jańczyk, A. Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in langmuir films. Biomacromolecules 2011, 12, 4144–4152.

    CAS  PubMed  Google Scholar 

  20. Rabea, E. I.; Badawy, M. E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003, 4, 1457–1465.

    CAS  PubMed  Google Scholar 

  21. Kong, M.; Chen, X. G.; Xing, K.; Park, H. J. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63.

    CAS  PubMed  Google Scholar 

  22. Li, R.; Guo, Z. Synthesis, characterization and antifungal properties of N,O-(acyl)-N-(trimethyl) chitosan chloride. e-Polymers 2010, 10, 1273–1278.

    Google Scholar 

  23. Mohamed, N. A.; Al-mehbad, N. Y. Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents. Int. J. Biol. Macromol 2013, 57, 11–117.

    Google Scholar 

  24. Chen, Y.; Li, J.; Li, Q.; Shen, Y.; Ge, Z.; Zhang, W.; Chen, S. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr. Polym. 2016, 143, 246–253.

    CAS  PubMed  Google Scholar 

  25. Tan, H.; Peng, Z.; Li, Q.; Xu, X.; Guo, S.; Tang, T. The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials 2012, 33, 365–377.

    CAS  PubMed  Google Scholar 

  26. Sajomsang, W.; Gonil, P.; Saesoo, S. Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride. Eur. Polym. J. 2009, 45, 2319–2328.

    CAS  Google Scholar 

  27. Sahariah, P.; Snorradottir, B. S.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Masson, M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J. Mater. Chem. B 2016, 4, 4762–4770.

    CAS  PubMed  Google Scholar 

  28. Zhao, X.; Li, P.; Guo, B.; Ma, P. X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Aata Biomater. 2015, 26, 236–248.

    CAS  Google Scholar 

  29. Guo, Z.; Chen, R.; Xing, R.; Liu, S.; Yu, H.; Wang, P.; Li, C.; Li, P. Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydr. Res. 2006, 341, 351–354.

    CAS  PubMed  Google Scholar 

  30. Rabea, E. I.; Badawy, M. E.; Rogge, T. M.; Stevens, C. V.; Hofte, M.; Steurbaut, W.; Smagghe, G. Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manage. Sci. 2005, 61, 951–960.

    CAS  Google Scholar 

  31. Dragostin, O. M.; Samal, S. K.; Dash, M.; Lupascu, F.; Panzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym. 2016, 141, 28–40.

    CAS  PubMed  Google Scholar 

  32. Prichystalova, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M.; Vojtova, L.; Kobera, L.; Spotz, Z.; Burgert, L.; Jancar, J. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int. J. Biol. Macromol. 2014, 65, 234–240.

    CAS  PubMed  Google Scholar 

  33. Zhang, J.; Tan, W.; Wei, L.; Chen, Y.; Mi, Y.; Sun, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis of urea-functionalized chitosan derivatives for potential antifungal and antioxidant applications. Carbohydr. Polym. 2019, 215, 108–118.

    CAS  PubMed  Google Scholar 

  34. Kritchenkov, A. S.; Egorov, A. R.; Kurasova, M. N.; Volkova, O. V.; Meledina, T. V.; Lipkan, N. A.; Tskhovrebov, A. G.; Kurliuk, A. V.; Shakola, T. V.; Dysin, A. P.; Egorov, M. Y.; Savicheva, E. A.; Dos,; Santos, W. M. Novel non-toxic high efficient antibacterial azido chitosan derivatives with potential application in food coatings. Food Chem. 2019, 301, 125247.

    CAS  PubMed  Google Scholar 

  35. Pei, L.; Cai, Z.; Shang, S.; Song, Z. Synthesis and antibacterial activity of alkylated chitosan under basic ionic liquid conditions. J. Appl. Polym. Sci. 2014, 131, 2540–2540.

    Google Scholar 

  36. Sadeghi, A. M. M.; Dorkoosh, F. A.; Avadi, M. R.; Saadat, P.; Rafiee-Tehrani, M.; Junginger, H. E. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int. J. Pharm. 2008, 355, 299–306.

    CAS  PubMed  Google Scholar 

  37. Marangon, C. A.; Martins, V. C. A.; Ling, M. H.; Melo, C. C.; Plepis, A. M. G.; Meyer, R. L.; Nitschke, M. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl. Mater. Interfaces 2020, 12, 5488–5499.

    CAS  PubMed  Google Scholar 

  38. Omidi, S.; Kakanejadifard, A. Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr. Polym. 2019, 208, 477–485.

    CAS  PubMed  Google Scholar 

  39. Martin, I.; Ruysschaerti, J. M.; Sanders, D.; Giffard, C. J. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur. J. Biochem. 1996, 239, 156–164.

    CAS  PubMed  Google Scholar 

  40. Cai, J.; Yang, J.; Wang, C.; Hu, Y.; Lin, J.; Fan, L. Structural characterization and antimicrobial activity of chitosan (CS-40)/nisin complexes. J. Appl. Polym. Sci. 2010, 116, 3702–3707.

    CAS  Google Scholar 

  41. Zhu, C.; Zou, S.; Rao, Z.; Min, L.; Liu, M.; Liu, L.; Fan, L. Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int. J. Biol. Macromol. 2017, 105, 1017–1024.

    CAS  PubMed  Google Scholar 

  42. Min, L.; Liu, M.; Zhu, C.; Liu, L.; Rao, Z.; Fan, L. Synthesis and in vitro antimicrobial and antioxidant activities of quaternary ammonium chitosan modified with nisin. J. Biomater. Sci. Polym. Ed. 2017, 28, 2034–2052.

    CAS  PubMed  Google Scholar 

  43. Sahariah, P.; Sorensen, K. K.; Hjalmarsdottir, M. A.; Sigurjonsson, O. E.; Jensen, K. J.; Masson, M.; Thygesen, M. B. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem. Commun. 2015, 51, 11611–11614.

    CAS  Google Scholar 

  44. Su, Y.; Tian, L.; Yu, M.; Gao, Q.; Wang, D.; Xi, Y.; Yang, P.; Lei, B.; Ma, P. X.; Li, P. Cationic peptidopolysaccharides synthesized by ‘click’ chemistry with enhanced broad-spectrum antimicrobial activities. Polym. Chem. 2017, 8, 3788–3800.

    CAS  Google Scholar 

  45. Zhou, C.; Wang, M.; Zou, K.; Chen, J.; Zhu, Y.; Du, J. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2013, 2, 1021–1025.

    CAS  Google Scholar 

  46. Li, P.; Zhou, C.; Rayatpisheh, S.; Ye, K.; Poon, Y. F.; Hammond, P. T.; Duan, H.; Chan-Park, M. B. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv. Mater. 2012, 24, 4130–4137.

    CAS  PubMed  Google Scholar 

  47. Hou, Z.; Shankar, Y. V.; Liu, Y.; Ding, F.; Subramanion, J. L.; Ravikumar, V.; Zamudio-Vazquez, R.; Keogh, D.; Lim, H.; Tay, M. Y. F.; Bhattacharjya, S.; Rice, S. A.; Shi, J.; Duan, H.; Liu, X. W.; Mu, Y.; Tan, N. S.; Tam, K. C.; Pethe, K.; Chan-Park, M. B. Nanoparticles of short cationic peptidopolysaccharide self-assembled by hydrogen bonding with antibacterial effect against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces 2017, 9, 38288–38303.

    CAS  PubMed  Google Scholar 

  48. Tsiligianni, M.; Papavergou, E.; Soultos, N.; Magra, T.; Savvaidis, I. N. Effect of chitosan treatments on quality parameters of fresh refrigerated swordfish (Xiphias gladius) steaks stored in air and under vacuum conditions. Int. J. Food Microbiol. 2012, 159, 101–106.

    CAS  PubMed  Google Scholar 

  49. Shankar, S.; Rhim, J. W. Preparation of sulfur nanoparticle-incorporated antimicrobial chitosan films. Food Hydrocolloids 2018, 82, 116–123.

    CAS  Google Scholar 

  50. Siripatrawan, U.; Kaewklin, P. Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids 2018, 84, 125–134.

    CAS  Google Scholar 

  51. Cui, H.; Wu, J.; Li, C.; Lin, L. Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT—Food Sci. Technol. 2017, 81, 233–242.

    CAS  Google Scholar 

  52. Fu, J.; Ji, J.; Yuan, W.; Shen, J. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials 2005, 26, 6684–6692.

    CAS  PubMed  Google Scholar 

  53. Du, X.; Liu, Y.; Yan, H.; Rafique, M.; Li, S.; Shan, X.; Wu, L.; Qiao, M.; Kong, D.; Wang, L. Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure. Biomacromolecules 2020, 21, 1243–1253.

    CAS  PubMed  Google Scholar 

  54. Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable function to kill and release bacteria. Acta Polymerica Sinica (in Chinese) 2020, 51, 319–325.

    Google Scholar 

  55. Wei, T.; Yu, Q.; Chen, H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthcare Mater. 2019, 8, e1801381.

    Google Scholar 

  56. Masood, N.; Ahmed, R.; Tariq, M.; Ahmed, Z.; Masoud, M. S.; Ali, I.; Asghar, R.; Andleeb, A.; Hasan, A. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int. J. Pharm. 2019, 559, 23–36.

    CAS  PubMed  Google Scholar 

  57. Qu, J.; Zhao, X.; Liang, Y.; Xu, Y.; Ma, P. X.; Guo, B. Degradable conductive injectable hydrogels as novel antibacterial, antioxidant wound dressings for wound healing. Chem. Eng. J. 2019, 362, 548–560.

    CAS  Google Scholar 

  58. Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47.

    CAS  PubMed  Google Scholar 

  59. Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784.

    PubMed  PubMed Central  Google Scholar 

  60. Li, P.; Poon, Y. F.; Li, W.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X.; Zhou, C.; Lamrani, M.; Beuerman, R. W. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10, 149–156.

    CAS  PubMed  Google Scholar 

  61. Adeli, H.; Khorasani, M. T.; Parvazinia, M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019, 122, 238–254.

    CAS  PubMed  Google Scholar 

  62. Tripodo, G.; Trapani, A.; Rosato, A.; Di Franco, C.; Tamma, R.; Trapani, G.; Ribatti, D.; Mandracchia, D. Hydrogels for biomedical applications from glycol chitosan and PEG diglycidyl ether exhibit pro-angiogenic and antibacterial activity. Carbohydr. Polym. 2018, 198, 124–130.

    CAS  PubMed  Google Scholar 

  63. Xia, G.; Lang, X.; Kong, M.; Cheng, X.; Liu, Y.; Feng, C.; Chen, X. Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydr. Polym. 2016, 136, 860–866.

    CAS  PubMed  Google Scholar 

  64. Lin, W. C.; Lien, C. C.; Yeh, H. J.; Yu, C. M.; Hsu, S. H. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013, 94, 603–611.

    CAS  PubMed  Google Scholar 

  65. Yin, M.; Wang, Y.; Zhang, Y.; Ren, X.; Qiu, Y.; Huang, T. S. Novel quaternarized N -halamine chitosan and polyvinyl alcohol nanofibrous membranes as hemostatic materials with excellent antibacterial properties. Carbohydr. Polym. 2020, 232, 115823.

    PubMed  Google Scholar 

  66. Gupta, D.; Haile, A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 2007, 69, 164–171.

    CAS  Google Scholar 

  67. Ye, W.; Leung, M. F.; Xin, J.; Kwong, T. L.; Lee, D. K. L.; Li, P. Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 2005, 46, 10538–10543.

    CAS  Google Scholar 

  68. Arshad, N.; Zia, K. M.; Jabeen, F.; Anjum, M. N.; Akram, N.; Zuber, M. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish. Int. J. Biol. Macromol. 2018, 111, 485–492.

    CAS  PubMed  Google Scholar 

  69. Huang, G.; Huang, H. Application of dextran as nanoscale drug carriers. Nanomedicine 2018, 13, 3149–3158.

    CAS  PubMed  Google Scholar 

  70. O’Connor, N. A.; Abugharbieh, A.; Yasmeen, F.; Buabeng, E.; Mathew, S.; Samaroo, D.; Cheng, H. P. The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int. J. Biol. Macromol. 2015, 72, 88–93.

    PubMed  Google Scholar 

  71. Tuchilus, C. G.; Nichifor, M.; Mocanu, G.; Stanciu, M. C. Antimicrobial activity of chemically modified dextran derivatives. Carbohydr. Polym. 2017, 161, 181–186.

    CAS  PubMed  Google Scholar 

  72. Amiri, S.; Ramezani, R.; Aminlari, A. M. Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J. Food Prot. 2008, 71, 411–415.

    CAS  PubMed  Google Scholar 

  73. Hoque, J.; Haldar, J. Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms. ACS Appl. Mater. Interfaces 2017, 9, 15975–15985.

    CAS  PubMed  Google Scholar 

  74. Chen, Y.; Yu, L.; Zhang, B.; Feng, W.; Xu, M.; Gao, L.; Liu, N.; Wang, Q.; Huang, X.; Li, P.; Huang, W. Design and synthesis of biocompatible, hemocompatible, and highly selective antimicrobial cationic peptidopolysaccharides via click chemistry. Biomacromolecules 2019, 20, 2230–2240.

    CAS  PubMed  Google Scholar 

  75. Radaeva, I. F.; Kostina, G. A.; Zmievskii, A. V. Hyaluronic acid: biological role, structure, synthesis, isolation, purification, and applications. Appl. Biochem. Microbiol. 1997, 33, 111–115.

    Google Scholar 

  76. Drago, L.; Cappelletti, L.; de Vecchi, E.; Pignataro, L.; Torretta, S.; Mattina, R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. APMIS 2014, 122, 1013–1019.

    CAS  PubMed  Google Scholar 

  77. Lin, Z.; Wu, T.; Wang, W.; Li, B.; Wang, M.; Chen, L.; Xia, H.; Zhang, T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 2019, 140, 330–342.

    CAS  PubMed  Google Scholar 

  78. Lequeux, I.; Ducasse, E.; Jouenne, T.; Thebault, P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur. Polym. J. 2014, 51, 182–190.

    CAS  Google Scholar 

  79. Yu, Q. H.; Zhang, C. M.; Jiang, Z. W.; Qin, S. Y.; Zhang, A. Q. Mussel-inspired adhesive polydopamine-functionalized hyaluronic acid hydrogel with potential bacterial inhibition. Glob. Chall. 2020, 4, 1900068.

    PubMed  Google Scholar 

  80. Silvestro, I.; Lopreiato, M.; Scotto d’Abusco, A.; di Lisio, V.; Martinelli, A.; Piozzi, A.; Francolini, I. Hyaluronic acid reduces bacterial fouling and promotes fibroblasts’ adhesion onto chitosan 2D-wound dressings. Int. J. Mol. Sci. 2020, 21, 2070.

    CAS  PubMed Central  Google Scholar 

  81. Zhang, L.; Yan, P.; Li, Y.; He, X.; Dai, Y.; Tan, Z. Preparation and antibacterial activity of a cellulose-based schiff base derived from dialdehyde cellulose and L-lysine. Ind. Crops Prod. 2020, 145, 112126.

    CAS  Google Scholar 

  82. He, X.; Yang, Y.; Song, H.; Wang, S.; Zhao, H.; Wei, D. Polyanionic composite membranes based on bacterial cellulose and amino acid for antimicrobial application. ACS Appl. Mater. Interfaces 2020, 12, 14784–14796.

    CAS  PubMed  Google Scholar 

  83. He, W.; Zhang, Z.; Zheng, Y.; Qiao, S.; Xie, Y.; Sun, Y.; Qiao, K.; Feng, Z.; Wang, X.; Wang, J. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J. Biomed. Mater. Res. A 2020, 188, 1086–1098.

    Google Scholar 

  84. Wu, Y.; Li, Q.; Zhang, X.; Li, Y.; Li, B.; Liu, S. Cellulose-based peptidopolysaccharides as cationic antimicrobial package films. Int. J. Biol. Macromol. 2019, 128, 673–680.

    CAS  PubMed  Google Scholar 

  85. Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N. M. In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 2017, 170, 296–304.

    CAS  PubMed  Google Scholar 

  86. Zhu, H.; Sheng, K.; Yan, E.; Qiao, J.; Lv, F. Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int. J. Biol. Macromol. 2012, 50, 840–843.

    CAS  PubMed  Google Scholar 

  87. Meng, Q.; Li, Y.; Xiao, T.; Zhang, L.; Xu, D. Antioxidant and antibacterial activities of polysaccharides isolated and purified from Diaphragma juglandis fructus. Int. J. Biol. Macromol. 2017, 105, 431–437.

    CAS  PubMed  Google Scholar 

  88. Ma, Y. L.; Zhu, D. Y.; Thakur, K.; Wang, C. H.; Wang, H.; Ren, Y. F.; Zhang, J. G.; Wei, Z. J. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92–101.

    CAS  PubMed  Google Scholar 

  89. Li, X. L.; Thakur, K.; Zhang, Y. Y.; Tu, X. F.; Zhang, Y. S.; Zhu, D. Y.; Zhang, J. G.; Wei, Z. J. Effects of different chemical modifications on the antibacterial activities of polysaccharides sequentially extracted from peony seed dreg. Int. J. Biol. Macromol. 2018, 116, 664–675.

    CAS  PubMed  Google Scholar 

  90. Wang, Z.; Xue, R.; Cui, J.; Wang, J.; Fan, W.; Zhang, H.; Zhan, X. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2019, 125, 376–382.

    CAS  PubMed  Google Scholar 

  91. Wang, H. B. Cellulase-assisted extraction and antibacterial activity of polysaccharides from the dandelion Taraxacum officinale. Carbohydr. Polym. 2014, 103, 140–142.

    CAS  PubMed  Google Scholar 

  92. Lu, H.; Gao, Y.; Shan, H.; Lin, Y. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera. Carbohydr. Polym. 2014, 107, 98–102.

    CAS  PubMed  Google Scholar 

  93. Vishwakarma, J.; Vavilala, S. L. Evaluating the antibacterial and antibiofilm potential of sulphated polysaccharides extracted from green algae Chlamydomonas reinhardtii. J. Appl. Microbiol. 2019, 127, 1004–1017.

    CAS  PubMed  Google Scholar 

  94. Khlusov, I.; Avdeeva, E.; Shupletsova, V.; Khaziakhmatova, O.; Litvinova, L.; Porokhova, E.; Reshetov, Y.; Zvereva, I.; Mushtovatova, L.; Karpova, M.; Guryev, A.; Sukhodolo, I.; Belousov, M. Comparative in vitro evaluation of antibacterial and osteogenic activity of polysaccharide and flavonoid fractions isolated from the leaves of Saussurea controversa. Molecules 2019, 24, 3680.

    CAS  PubMed Central  Google Scholar 

  95. Hajji, M.; Hamdi, M.; Sellimi, S.; Ksouda, G.; Laouer, H.; Li, S.; Nasri, M. Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydr. Polym. 2019, 206, 380–388.

    CAS  PubMed  Google Scholar 

  96. Wang, C.; Sun, Z.; Liu, Y.; Zheng, D.; Liu, X.; Li, S. Earthworm polysaccharide and its antibacterial function on plant-pathogen microbes in vitro. Eur. J. Soil Biol. 2007, 43, S135–S142.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shanghai (No. 18ZR1410300), the National Natural Science Foundation of China (Nos. 21861162010, 21774031, and 31800801), the National Key Research and Development Program of China (No. 2016YFC1100401), and Research program of State Key Laboratory of Bioreactor Engineering, the Fundamental Research Funds for the Central Universities (Nos. 22221818014 and 50321041917001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Hui Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, GX., Wu, YM., Bi, YF. et al. Antimicrobial Properties and Application of Polysaccharides and Their Derivatives. Chin J Polym Sci 39, 133–146 (2021). https://doi.org/10.1007/s10118-021-2506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2506-2

Keywords

Navigation