Skip to main content

Advertisement

Log in

Effect of graphene on various properties of binary blend of polyetherimide/siliconerubber reinforced with halloysite nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present investigation is aimed to develop hybrid nanocomposites of polyetherimide (PEI)/silicone rubber (85:15 wt:wt) incorporated with fixed loading (3 wt%) of halloysite nanotubes (HNTs) and 0.0, 0.1, 0.3, and 0.5 wt% loadings of reduced graphene oxide (RGO) by melt mixing process using a twin-screw extruder. In comparison with RGO, it is observed that the HNTs disperse sparingly in PEI/silicone rubber mixtures in spite of having similar Physico-chemical structures. SEM studies reveal that the addition of RGO increases the dispersion of HNTs in PEI/silicone rubber to a greater extent, which results in an improvement in tensile strength from 41 to 59 MPa and tensile modulus from 658 to 715 MPa on the addition of 0.3 wt% of graphene. This synergistic effect of both the nanofillers is also reflected by significant improvements in flexural modulus (from 3217 to 4156 MPa), impact strength (56 to 78 J/m), Rockwell hardness (89 to 104), and thermal properties of nanocomposite; the highest storage modulus (7290 MPa) was observed for 0.3 wt% and lowest (5390 MPa) for 0.0 wt% loading of graphene at 50 °C temperature. It is due to the rigidity in polymer chains movement because of dispersion of RGO that improves the interfacial interaction, as well as thermal vibrations of the C–C bond, which are restricted of the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kiran ZS, Babu VS, Sekhar KS, Muvvala P, Reddy MK, Gugulothu S (2021) Tensile and flexural characteristics of an epoxy-glass composite reinforced with Cloisite 15A nanoclay. Iran Polym J 30:831–841

    Article  Google Scholar 

  2. Balachandran GB, David PW, Alexander AB, Mariappan RK, Balasundar P, Parrthipan B (2021) Saccharum barberi grass bagasse ash-based silicone rubber composites for electrical insulator applications. Iran Polym J 30:1285–1296

    Article  CAS  Google Scholar 

  3. Kumar S, Saha A (2021) Graphene nanoplatelets/organic wood dust hybrid composites: physical, mechanical and thermal characterization. Iran Polym J 30:935–951

    Article  CAS  Google Scholar 

  4. Ning N-y, Yin Q-j, Luo F, Zhang Q, Du R, Fu Q (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48:7374–7384

    Article  CAS  Google Scholar 

  5. Pal P, Kundu MK, Malas A, Das CK (2015) Thermo mechanical properties of organically modified halloysite nanotubes/cyclic olefin copolymer composite. Polym Compos 36:955–960

    Article  CAS  Google Scholar 

  6. Shimpi NG, Mali AD, Mishra S (2016) Property investigation of surface-modified MMT on mechanical and photo-oxidative degradation of viton rubber composites. Polym Bull 73:3033–3048

    Article  CAS  Google Scholar 

  7. Shimpi N, Mishra S (2011) Influence of surface modification of montomorillonite on properties of PVC nanocomposites. J Compos Mater 45:2447–2453

    Article  CAS  Google Scholar 

  8. Ahamad A, Pandey K, Verma V, Mishra R (2016) Effect of montmorillonite clay on polyetherimide/silicone rubber blend based nanocomposites. Int J Sci Advance Res Technol 2:63–68

    Google Scholar 

  9. Singh R, Pandey K, Verma V, Ahamad A, Mishra R (2015) Nanocomposite based on MMT nanoclay reinforced ethylene propylene diene monomer (EPDM)/silicone rubber blends system. J Basic Appl Eng Res 2:1263–1265

    Google Scholar 

  10. Ghodke S, Sonawane S, Bhanvase B, Mishra S, Joshi K, Potoroko I (2017) Halloysite nanocontainers for controlled delivery of Gibberellic Acid. Russ J Appl Chem 90:120–128

    Article  CAS  Google Scholar 

  11. Ghodke SA, Sonawane SH, Bhanvase BA, Mishra S, Joshi KS (2015) Studies on fragrance delivery from inorganic nanocontainers: encapsulation, release and modeling studies. J Inst of Eng (India) Ser E. 96:45–53

    Article  CAS  Google Scholar 

  12. Shimpi NG, Mali AD, Sonawane HA, Mishra S (2014) Effect of nBaCO3 on mechanical, thermal and morphological properties of isotactic PP-EPDM blend. Polym Bull 71:2067–2080

    Article  CAS  Google Scholar 

  13. Patil P, Hansora D, Mishra S (2019) Synergistically improved physico-mechanical properties of nanopolystyrene-viton rubber blends. Res Develop in Material sci 10:1215–1221

    Google Scholar 

  14. Mishra R, Rai J (2016) Polyetherimide (PEI)/silicone rubber composite reinforced with nanosilica particles. Int J Sci Technol Res 5:176–180

    Google Scholar 

  15. Alghamdi MN (2020) Thermoplastic composite system using polymer blend and fillers. J King Saud Univ-Eng Sci. https://doi.org/10.1016/j.jksues.2020.12.009

    Article  Google Scholar 

  16. Rybiński P, Janowska G (2012) Thermal properties and flammability of nanocomposites based on nitrile rubbers and activated halloysite nanotubes and carbon nanofibers. Thermochim Acta 549:6–12

    Article  Google Scholar 

  17. Keating M (1998) High glass transitions of high-performance thermoplastics. Thermochim Acta 319:201–212

    Article  CAS  Google Scholar 

  18. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49

    Article  CAS  Google Scholar 

  19. Ye Y, Chen H, Wu J, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433

    Article  CAS  Google Scholar 

  20. Mehta A, Isayev A (1991) Rheology, morphology, and mechanical characteristics of poly (etherether ketone) -liquid crystal polymer blends. Polym Eng Sci 31:971–980

    Article  CAS  Google Scholar 

  21. Mishra RM, Rai J (2018) Preparation and properties of nanocomposites based on polyetherimide (PEI)/silicone rubber reinforced with halloysite nanotubes. Indian J Pure Appl Phys 56:787–791

    Google Scholar 

  22. Bao S, Tjong SC (2008) Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature. Mater Sci Eng, A 485:508–516

    Article  Google Scholar 

  23. Jain R, Sharma DK, Mishra S (2019) High-performance supercapacitor electrode of HNO 3 doped polyaniline/reduced graphene oxide nanocomposites. J Electron Mater 48:3122–3130

    Article  CAS  Google Scholar 

  24. Mahajan C, Chaudhari P, Mishra S (2018) RGO–MWCNT–ZnO based polypyrrole nanocomposite for ammonia gas sensing. J Mater Sci: Mater Electron 29:8039–8048

    CAS  Google Scholar 

  25. Paraskar P, Bari P, Mishra S (2020) Influence of amine functionalized graphene oxide on mechanical and thermal properties of epoxy matrix composites. Iran Polym J 29:47–55

    Article  CAS  Google Scholar 

  26. Mishra S, Sonawane S, Singh R (2005) Studies on characterization of nano CaCO3 prepared by the in-situ deposition technique and its application in PP-nano CaCO3 composites. J. Polym. Sci. Part B: Polym Phys 43:107–113

    Article  CAS  Google Scholar 

  27. Mishra S, Shimpi N (2007) Effect of the variation in the weight percentage of the loading and the reduction in the nanosizes of CaSO4 on the mechanical and thermal properties of styrene–butadiene rubber. J Appl Polym Sci 104:2018–2026

    Article  CAS  Google Scholar 

  28. Bharadiya PS, Singh MK, Mishra S (2019) Influence of graphene oxide on mechanical and hydrophilic properties of epoxy/banana fiber composites. JOM 71:838–843

    Article  CAS  Google Scholar 

  29. Mahajan CR, Mishra S (2019) Effect of graphitic nanomaterials on thermal, mechanical and morphological properties of polypropylene nanocomposites. Res Dev Material Sci 11:1190

    Google Scholar 

  30. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498–1525

    Article  CAS  Google Scholar 

  31. Alam MN, Kumar V, Potiyaraj P, Lee D-J, Choi J (2021) Mutual dispersion of graphite–silica binary fillers and its effects on curing, mechanical, and aging properties of natural rubber composites. Polym Bull. https://doi.org/10.1007/s00289-021-03608-x)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ER-IPR, DRDO New Delhi for providing financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.M., Ahamad, A., Vijayvargiya, R. et al. Effect of graphene on various properties of binary blend of polyetherimide/siliconerubber reinforced with halloysite nanotubes. Polym. Bull. 80, 5469–5479 (2023). https://doi.org/10.1007/s00289-022-04291-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04291-2

Keywords

Navigation