Skip to main content
Log in

High-Performance Supercapacitor Electrode of HNO3 Doped Polyaniline/Reduced Graphene Oxide Nanocomposites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) nanorods were prepared by a chemical method in the presence of HNO3 as an acid dopant. Reduced graphene oxide (RGO) sheets were synthesized and used as a substrate for the polymerization of PANI, affording the PANI–RGO nanocomposites. The PANI composites with RGO were synthesized in the presence of dopant (dPANI–RGO) and without dopant (PANI–RGO). A comparative study was performed for RGO, PANI, dPANI, PANI–RGO and dPANI–RGO. The nanocomposites were characterized by XRD, FESEM, FTIR and TGA. XRD study showed that the dPANI–RGO is more crystalline in nature. The FESEM studies revealed that longer polyaniline nanotubes can be obtained on RGO sheets in the presence of RGO with HNO3. FTIR results show a greater extent of formation of quinoid units in the presence of both HNO3 and RGO, while benzenoid units show this effect only with HNO3. TGA results showed successful incorporation of RGO sheets with the enhanced thermal stability of dPANI–RGO as compared to dPANI. The electrochemical behavior of dPANI–RGO was also investigated. In the presence of RGO and HNO3, longer polyaniline nanotubes grow on RGO sheets forming a continuous network for electron transfer resulting in low charge transfer resistance for dPANI–RGO (3 Ω) as compared to PANI (29 Ω), which ultimately improves the electrochemical performance of the nanocomposites as a supercapacitor electrode material. The dPANI–RGO nanorods exhibited a specific capacitance of 563 F/g and good cycling stability up to the 5000 cycles with 84% specific retention at 0.5 A g−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zhang, X.P. Han, and Z. Hu, Chem. Soc. Rev. 44, 699 (2015).

    Article  Google Scholar 

  2. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (New York: Kluwer Academic, 1999).

    Book  Google Scholar 

  3. K. Jost, D. Stenger, C.J. Perez, Mc Donough, K. Lian, Y. Gogotsi, and G. Dion, Energy Environ. Sci. 6, 2698 (2013).

    Article  Google Scholar 

  4. D.P. Hansora, N.G. Shimpi, and S. Mishra, JOM 67, 2855 (2015). https://doi.org/10.1007/s11837-015-1522-5.

    Article  Google Scholar 

  5. R. Kötz and M. Carlen, Electrochim. Acta 45, 2483 (2000).

    Article  Google Scholar 

  6. W.H. Zuo, R.Z. Li, C. Zhou, Y.Y. Li, J.L. Xi, and J.P. Liu, Adv. Sci. 4, 1600539 (2017).

    Article  Google Scholar 

  7. M.E. Roberts, D.R. Wheeler, B.B. McKenzie, and B.C. Bunker, J. Mater. Chem. 19, 6977 (2009).

    Article  Google Scholar 

  8. V.K. Rana, M. Choi, J. Kong, G. Kim, M. Kim, S. Kim, S. Mishra, R. Singh, and C. Ha, Macromol. Mater. Eng. 296, 131 (2011).

    Article  Google Scholar 

  9. M.A. Bavio, G.G. Acosta, and T. Kessler, J. Power Sources 245, 475 (2014).

    Article  Google Scholar 

  10. Q. Wu, M. Chen, S. Wang, X. Zhang, L. Huan, and G. Diao, Chem. Eng. J. 304, 29 (2016).

    Article  Google Scholar 

  11. Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, and C. Xue, Appl. Surf. Sci. 361, 57 (2016).

    Article  Google Scholar 

  12. X. Li, Y. Liu, W. Guo, J. Chen, W. He, and F. Peng, Electrochim. Acta 135, 550 (2014).

    Article  Google Scholar 

  13. D.P. Hansora, N.G. Shimpi, and S. Mishra, RSC Adv. 5, 107716 (2015).

    Article  Google Scholar 

  14. M. Zhao, X. Wu, and C. Cai, J. Phys. Chem. C 113, 4987 (2009).

    Article  Google Scholar 

  15. T. Sen, S. Mishra, and N. Shimpi, Mater. Sci. Eng. B 220, 13 (2017).

    Article  Google Scholar 

  16. P. Yu, X. Zhao, Y. Li, and Q. Zhang, Appl. Surf. Sci. 393, 37 (2017).

    Article  Google Scholar 

  17. S. Mishra, N. Shimpi, and T. Sen, J. Polym. Res. 20, 49 (2013).

    Article  Google Scholar 

  18. M.D. Catedral, A.K.G. Tapia, and R.V. Saramago, Sci. Diliman 16, 41 (2004).

    Google Scholar 

  19. W. Zhao, D.W. He, Y.S. Wang, Y. Hu, X. Du, and X. Hao, RSC Adv. 5, 98241 (2015).

    Article  Google Scholar 

  20. L. Zhang, W. Wang, J. Cheng, Y. Shi, Q. Zhang, P. Dou, and X. Xu, J. Mater. Sci. 53, 787 (2018).

    Article  Google Scholar 

  21. D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. Alemany, W. Lu, and J. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  22. R. Jain and S. Mishra, RSC Adv. 6, 27404 (2016).

    Article  Google Scholar 

  23. S. Stankovich, D.A. Dikin, R.D. Piner, K.M. Kohlhaas, A. Kleinhammes, and Y. Jia, Carbon 45, 1558 (2007).

    Article  Google Scholar 

  24. W. Wu, Y. Li, L. Yang, Y. Ma, D. Pan, and Y. Li, Electrochim. Acta 139, 117 (2014).

    Article  Google Scholar 

  25. Z. Gao, F. Wang, J. Chang, D. Wu, X. Wang, X. Wang, F. Xu, S. Gao, and K. Jiang, Electrochim. Acta 133, 325 (2014).

    Article  Google Scholar 

  26. A. Ehsani, F. Babaei, and M. Nasrollahzadeh, Appl. Surf. Sci. 2, 1060 (2013).

    Article  Google Scholar 

  27. L. Machaut, K. Shin, Z.K. Kalantar, J.D. Plessis, S.H. Han, R.W. Kajim, R.B. Kaner, D. Li, X. Gou, S.J. Ippolito, and W. Wlodarski, J. Phy. Chem. C 114, 16168 (2010).

    Article  Google Scholar 

  28. A. Junwei, J. Liu, Y. Zhou, H. Zhao, Y. Ma, M. Li, M. Yu, and S. Li, J. Phys. Chem. C 116, 19699 (2012).

    Article  Google Scholar 

  29. R. Jain, R. Mehrotra, and S. Mishra, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0504-0.

    Google Scholar 

  30. J. Xu, K. Wang, S. Zu, B. Han, and Z. Wei, ACS Nano 4, 5019 (2010).

    Article  Google Scholar 

  31. E. Subramanian, G. Anitha, and N. Vijayakumar, J. Appl. Polym. Sci. 106, 673 (2007).

    Article  Google Scholar 

  32. R. Kumar, T. Bhuvana, G. Mishra, and A. Sharma, RSC Adv. 6, 73496 (2016).

    Article  Google Scholar 

  33. H.C. Cheng, J.K. Chiao, H.C. Cheng, F.M. Ching, T.L. Wei, and D.H. Ching, J. Polym. Res. 24, 10 (2017).

    Article  Google Scholar 

  34. U. Rana and S. Malik, Chem. Commun. 48, 10862–10864 (2012).

    Article  Google Scholar 

  35. S. Park, J. An, R. Piner, I. Jung, D. Yang, and A. Velamakanni, Chem. Mater. 20, 6592 (2008).

    Article  Google Scholar 

  36. K.I. Winey, T. Kashiwagi, and M. Mu, MRS Bull. 32, 348 (2007).

    Article  Google Scholar 

  37. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, and J.B. Baek, ACS Nano 6, 1715 (2012).

    Article  Google Scholar 

  38. G. Gheno, N. R. de Souza Basso, R. Hübler, Macromol. Symp. 299–300, 74 (2011).

  39. L.Q. Xu, Y.L. Liu, K.-G. Neoh, E.-T. Kang, and G.D. Fu, Macromol. Rapid Commun. 32, 684 (2011).

    Article  Google Scholar 

  40. N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, and Y. Luo, Appl. Surf. Sci. 392, 71 (2017).

    Article  Google Scholar 

  41. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, and H.M. Cheng, ACS Nano 3, 1745 (2009).

    Article  Google Scholar 

  42. Q. Hao, X. Xia, W. Lei, W. Wang, and J. Qiu, Carbon 81, 552 (2015).

    Article  Google Scholar 

  43. H. Fan, H. Wang, N. Zhao, X. Zhang, and J. Xu, J. Mater. Chem. 22, 2774 (2012).

    Article  Google Scholar 

  44. H. Wang, L. Ma, M. Gan, T. Zhou, X. Sun, W. Dai, H. Wang, and S. Wang, Compos. B 92, 405 (2016).

    Article  Google Scholar 

  45. X. Wang, G. Sun, P. Routh, D.H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev. 43, 7067 (2014).

    Article  Google Scholar 

  46. M. Kim, C. Lee, and J. Jang, Adv. Funct. Mater. 24, 2489 (2014).

    Article  Google Scholar 

  47. X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun, and X. Wang, J. Mater. Chem. 22, 16844 (2012).

    Article  Google Scholar 

  48. D. Gui, C. Liu, F. Chen, and J. Liu, Appl. Surf. Sci. 307, 172 (2014).

    Article  Google Scholar 

  49. X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, L. Wang, and Y. Yu, J. Power Sources 293, 799 (2015).

    Article  Google Scholar 

  50. P. Yu, Y. Li, X. Yu, X. Zhao, L. Wu, and Q. Zhang, Langmuir 29, 12051 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

Miss Rini Jain is thankful to the Department of Science & Technology (DST), New Delhi for providing an INSPIRE fellowship. Prof. Satyendra Mishra is thankful to the UGC, New Delhi for providing a BSR Faculty Fellowship. The authors are also thankful to Dr. Dhammanand Shirale, School of Physical Sciences, NMU (Jalgaon) for electrochemical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Sharma, D.K. & Mishra, S. High-Performance Supercapacitor Electrode of HNO3 Doped Polyaniline/Reduced Graphene Oxide Nanocomposites. J. Electron. Mater. 48, 3122–3130 (2019). https://doi.org/10.1007/s11664-019-07048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07048-2

Keywords

Navigation