Skip to main content

Advertisement

Log in

Crude dry extract from Colocasia esculenta in association with poly(vinyl alcohol) as biomaterial to prepare bioactive wound dressing

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Colocasia esculenta (taro) is traditionally reported to be rich in bioactive compounds with pharmacological properties, and it is a source of starch—a natural polymer with film-forming capacity. The present work aimed to use the crude dry extract from taro rhizome in high proportions to form polymeric films in association with PVA, for use as biomaterials to prepare wound dressing. The films prepared by solvent casting technique were analyzed to evaluate their physicochemical parameters, barrier, and mechanical properties, and in vitro biocompatibility, important attributes for the functionality and safety of films for wound dressing application. The starch contained in the taro extract showed good filmogenic properties after prior gelatinization in water and then blending with the PVA solution containing glycerol. Moreover, the films obtained were thin, smooth, transparent, shiny, and domain-free. SEM photomicrographs showed the existence of a continuous and homogeneous microstructure. Additionally, the blends were partially miscible and presented an altered crystalline structure. The thermal stability and mechanical resistance parameters were improved due to the presence of the taro extract. In addition, the parameters pertaining to the functionality of the films as wound dressings were improved, particularly in the films containing higher proportions of the extract, which is configured as an advantage, since the taro extract proved to be non-cytotoxic, biocompatible, with healing activity, and it comes from a renewable source. Crude extract from taro rhizome blended with PVA proved to be suitable for the intended purpose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomat 2:1–16

    Article  Google Scholar 

  2. Bedor PBA, Caetano RMJ, Souza Júnior FG, Leite SGF (2020) Advances and perspectives in the use of polymers in the environmental area: a specific case of PBS in bioremediation. Polímeros 30:1–10

    Article  Google Scholar 

  3. Jiang T, Duan Q, Zhu J, Liu H, Yu L (2020) Starch-based biodegradable materials: challenges and opportunities. Adv Ind Eng Polym Res 3:8–18

    Google Scholar 

  4. Choi G, Cha HJ (2019) Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering. Biomater Res 23:18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barua E, Deoghare AB, Deb P, Lala SD (2018) Naturally derived biomaterials for development of composite bone scaffold: a review. IOP Mat Sci Eng 377:012013

    Google Scholar 

  6. Souza JRCL, Villanova JCO, Souza TS, Maximino RC, Menini L (2021) Vegetable fixed oils obtained from soursop agro-industrial waste: extraction, characterization and preliminary evaluation of the functionality as pharmaceutical ingredients. Environ Technol Innov 21:101379

    Article  CAS  Google Scholar 

  7. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Biopro Tech 5:2058–2076

    Article  Google Scholar 

  8. Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52:2522–2529

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed A, Khan F (2013) Extraction of starch from taro (Colocasia esculenta) and evaluating it and further using taro starch as disintegrating agent in tablet formulation with over all evaluation. Inventi Rapid Novel Excip 2013:1–5

    Google Scholar 

  10. Assefa Z, Admassu S (2013) Development and characterization of antimicrobial packaging films. J Food Process Technol 4:235–241

    Article  Google Scholar 

  11. Subhash CK, Sarla S, Jaybardhan S (2012) Phytochemical screening of garhwal himalaya wild edible tuber Colocasia esculenta. Int Res J Pharm 3:181–186

    Google Scholar 

  12. Mijinyawa AH, Durga G, Mishra A (2018) Isolation, characterization, and microwave assisted surface modification of Colocasia esculenta (L.) Schott mucilage by grafting polylactide. Int J Biol Macromol 119:1090–1097

    Article  CAS  PubMed  Google Scholar 

  13. Leong ACN, Kinjo Y, Tako M, Iwasaki H, Oku H, Tamaki H (2010) Flavonoid glycosides in the shoot system of Okinawa Taumu (Colocasia esculenta S.). Food Chem 119:630–635

    Article  CAS  Google Scholar 

  14. Li H, Dong Z, Liu X, Chen H, Lai F, Zhang M (2018) Structure characterization of two novel polysaccharides from Colocasia esculenta (Taro) and a comparative study of their immunomodulatory activities. J Funct Foods 42:47–57

    Article  CAS  Google Scholar 

  15. Pereira PR, Silva JT, Verícimo MA, Paschoalin VMF, Teixeira GAPB (2015) Crude extract from taro (Colocasia esculenta) as a natural source of bioactive proteins able to stimulate haematopoietic cells in two murine models. J Funct Foods 18:333–343

    Article  CAS  Google Scholar 

  16. Simsek S, El SN (2015) In vitro starch digestibility, estimated glycemic index and antioxidant potential of taro (Colocasia esculenta L. Schott) corn. Food Chem 168:257–261

    Article  CAS  PubMed  Google Scholar 

  17. Gonçalves RF, Silva AMS, Silva AM, Valentão P, Ferreres F, Gil-Izquierdo A, Silva JB, Santos D, Andrade PB (2013) Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chem 141:3480–3485

    Article  PubMed  Google Scholar 

  18. Sharma P, Mishra NK (2009) Ethno-medicinal uses and agro-biodiversity of Barmana region in Bilaspur district of Himachal Pradesh, Northwestern Himalaya. Ethnobot Leaflets 5:709–721

    Google Scholar 

  19. Mukurumbira A, Mariano M, Dufresne A, Mellem JJ, Amonsou EO (2017) Microstructure, thermal properties and crystallinity of Amadumbe Starch nanocrystals. Int J Biol Macromol 102:241–247

    Article  CAS  PubMed  Google Scholar 

  20. Matveev YI, Grinberg VY, Tolstoguzov VB (2000) The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers. Food Seeds Food Hydrocoll 14:425–437

    Article  CAS  Google Scholar 

  21. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  22. Shah U, Gani A, Ashwar BA, Shah A, Ahmad M, Gani A, Wani IA, Masoodi FA (2015) A review of the recent advances in starch as active and nanocomposite packaging films. Cogent Food Agric 1:1115640

    Article  Google Scholar 

  23. Andrade LA, Barbosa NA, Pereira J (2017) Extraction and properties of starches from the non-traditional vegetables yam and taro. Polímeros 27:151–157

    Article  Google Scholar 

  24. Liporacci JSN, Mali S, Grossmann MVE (2005) Effects of extraction method on chemical composition and functional properties of yam starch (dioscorea alata). Semina Ciênc Agrár 26(3):345–352

    Article  CAS  Google Scholar 

  25. Waghmare VS, Wadke PR, Dyawanapelly S, Deshpande A, Jain R, Dandekar P (2018) Starch based nanofibrous scaffolds for wound healing applications. Bioact Mater 3:255–266

    Article  PubMed  Google Scholar 

  26. Chukwu KI, Udeala OK (2000) Binding effectiveness of Colocasia esculenta Gum in poorly compressible drugs-paracetamol and metronidazole tablet formulations. Boll Chim Farm 139:89–97

    CAS  PubMed  Google Scholar 

  27. Gurpreet A, Karan M, Inderbir S (2011) Formulation and evaluation of mucoadhesive matrix tablets of taro gum: optimization using response surface methodology. Polim Med 41:23–34

    Google Scholar 

  28. Soumya M, Chowdary YA, Swapna VN, Prathyusha ND, Geethika R, Jyostna B, Mohan KSK (2014) Preparation and optimization of sustained release matrix tablets of metoprolol succinate and taro gum using response surface methodology. Asian J Pharm 8:51–57

    Article  CAS  Google Scholar 

  29. Pawar HA, Kamat SR (2017) Development and evaluation of mouth dissolving film of ondansetron hydrochloride using hpmc e5 in combination with taro gum and other commercially available gums. J Mol Pharm Org Process Res 5:138

    Google Scholar 

  30. Wardhani RAK, Asri LATW, Rachmawati H, Khairurrijal K, Purwasasmita BS (2020) Physical-chemical crosslinked electrospun Colocasia esculenta Tuber protein-chitosan-poly(ethylene oxide) nanofibers with antibacterial activity and cytocompatibility. Int J Nanomed 15:6433–6449

    Article  CAS  Google Scholar 

  31. Caetano KS, Frade MAC, Minatel DG, Santana LA, Enwemeka CS (2009) Phototherapy improves healing of chronic venous ulcers. Photomed Laser Surg 27:111–118

    Article  PubMed  Google Scholar 

  32. Garros IC, Campos ACL, Tâmbara EM, Tenório SB, Torres OJM, Agulham MA, Araújo ACF, Santis-Isolan PMB, Oliveira RM, Arruda ECM (2006) Extract from passiflora edulis on the healing of open wounds in rats: morphometric and histological study. Acta Cir Bras 21:55–65

    Article  PubMed  Google Scholar 

  33. Koga AY, Pereira AV, Lipinski LC, Oliveira MRP (2018) Evaluation of wound healing effect of alginate films containing aloe vera (Aloe barbadensis Miller) gel. J Biomater Appl 32:1212–1221

    Article  CAS  PubMed  Google Scholar 

  34. Zonari A, Martins TMM, Paula ACC, Boeloni JN, Novikoff S, Marques AP, Correlo VM, Reis RL, Goes AM (2015) Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomater 17:170–181

    Article  CAS  PubMed  Google Scholar 

  35. Xie L, Jiang M, Dong X, Bai X, Tong J, Zhou J (2012) Controlled mechanical and swelling properties of poly (vinyl alcohol)/sodium alginate blend hydrogels prepared by freeze-thaw followed by ca2+ crosslinking. J Appl Polym Sci 124:823–831

    Article  CAS  Google Scholar 

  36. Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mater Sci Eng C Mater Biol Appl 30:196–202

    Article  CAS  Google Scholar 

  37. ASTM. American Society for Testing and Materials (2005) Standard Test Method for Water Vapor Transmission of Materials. ASTM E 96–05. ASTM, Philadelphia

  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  39. Kamiloglu S, Toydemir G, Boyacioglu D, Beekwilder J, Hall RD, Capanoglu E (2016) A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit Rev Food Sci Nutr 56:S110–S129

    Article  CAS  PubMed  Google Scholar 

  40. Craig D (1999) The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm 179(2):179–207

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Reddy CK, Xu B (2018) A systematic comparative study on morphological, crystallinity, pasting, thermal and functional characteristics of starches resources utilized in China. Food Chem 259:81–88

    Article  CAS  PubMed  Google Scholar 

  42. Sajilata MG, Singhal R, Kulkarni PR (2006) Resistant starch—a review. Compr Rev Food Sci Food Saf 5:1–17

    Article  CAS  PubMed  Google Scholar 

  43. Campos CA, Gerschenson LN, Flores SK (2011) Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol 4:849–875

    Article  CAS  Google Scholar 

  44. Liao LS, Liu HS, Liu XX, Chen L, Yu L, Chen P (2014) Development of microstructures and phase transitions of starch. Acta Polym Sin 2014:761–773

    Google Scholar 

  45. Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37:595–623

    Article  CAS  Google Scholar 

  46. Yu L, Christie G (2005) Microstructure and mechanical properties of orientated thermoplastic starches. J Mater Sci 40:111–116

    Article  CAS  Google Scholar 

  47. Bertuzzi MA, Gottifredi JC, Armada M (2012) Mechanical properties of a high amylose content corn starch based film, gelatinized at low temperature. Braz J Food Technol 15:219–227

    Article  CAS  Google Scholar 

  48. Dome K, Podgorbunskikh E, Bychkov LO (2020) Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers 12:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548

    Article  CAS  Google Scholar 

  50. Lopez-Rubio A, Flanagan BM, Shrestha AK, Gidley MJ, Gilbert EP (2008) Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromol 9(7):1951–1958

    Article  CAS  Google Scholar 

  51. Singh V, Ali SZ, Somashekar R, Mukherjee PS (2006) Nature of crystallinity in native and acid modified starches. Int J Food Prop 9:845–854

    Article  CAS  Google Scholar 

  52. Aboubakar NYN, Scher J, Mbofung CMF (2008) Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J Food Eng 86:294–305

    Article  CAS  Google Scholar 

  53. Sit N, Misra S, Baruah D, Badwaik LS, Deka SC (2014) Physicochemical properties of taro and maize starch and their effect on texture, colour and sensory quality of tomato ketchup. Starch 66:294–302

    Article  CAS  Google Scholar 

  54. Sukhija S, Singh S, Riar CS (2016) Isolation of starches from different tubers and study of their physicochemical, thermal, rheological and morphological characteristics. Starch 68:160–168

    Article  CAS  Google Scholar 

  55. Pereira PR, Del Aguila EM, Verícimo MA, Zingali RB, Paschoalin VMF, Silva JT (2014) Purification and characterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo. Protein J 33:92–99

    Article  CAS  PubMed  Google Scholar 

  56. Swarnkar S, Katewa SS (2008) Ethnobotanical observation on tuberous plants from tribal area of Rajasthan (India). Ethnobot Leaflets 2008(1):87

    Google Scholar 

  57. Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2004) Preparation, surface modification and characterisation of solution cast starch pva blended films. Polym Test 23:17–27

    Article  CAS  Google Scholar 

  58. López OV, García MA, Zaritzky NE (2008) Film forming capacity of chemically modified corn starches. Carbohydr Polym 73:573–581

    Article  PubMed  Google Scholar 

  59. Paes SS, Yakimets I, Mitchell JR (2008) Influence of gelatinization process on functional properties of cassava starch films. Food Hydrocoll 22:788–797

    Article  CAS  Google Scholar 

  60. Hoover R, Ratnayake WS (2001) Determination of total amylose content of starch. Curr Protoc Food Anal Chem 00:1–5

    Article  CAS  Google Scholar 

  61. Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368

    Article  CAS  Google Scholar 

  62. Chen P, Yu L, Simon GP, Liu X, Dean K, Chen L (2011) Internal structures and phase-transitions of starch granules during gelatinization. Carbohyd Polym 83:1975–1983

    Article  CAS  Google Scholar 

  63. Zhong F, Li Y, Ibáñez AM, Oh MH, McKenzie KS, Shoemaker C (2009) The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starch pastes. Food Hydrocoll 23:406–414

    Article  CAS  Google Scholar 

  64. Araujo-Farro PC, Podadera G, Sobral PJA, Menegalli FC (2010) Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydr Polym 81:839–848

    Article  CAS  Google Scholar 

  65. Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50:379–386

    Article  CAS  Google Scholar 

  66. García MA, Martino MN, Zaritzky NE (2000) Microstructural characterization of plasticized starch-based films. Starch 52:118–124

    Article  Google Scholar 

  67. Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50:149–155

    Article  Google Scholar 

  68. Mali S, Grossmann MVE, Garcı́a MA, Martino MN, Zaritzky NE (2004) Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56(2):129–135

    Article  CAS  Google Scholar 

  69. El Sayed AM, El-Gamal S, Morsi WM, Mohammed G (2015) Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J Mater Sci 50:4717–4728

    Article  Google Scholar 

  70. Maiti S, Ray D, Mitra D, Sengupta S, Kar T (2011) Structural changes of starch/polyvinyl alcohol biocomposite films reinforced with microcrystalline cellulose due to biodegradation in simulated aerobic compost environment. J Appl Polym Sci 122:2503–2511

    Article  CAS  Google Scholar 

  71. Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179

    Article  CAS  PubMed  Google Scholar 

  72. Ramaraj B (2007) Crosslinked poly(vinyl alcohol) and starch composite films. II. physicomechanical, thermal properties and swelling studies. J Appl Polym Sci 103:909–916

    Article  CAS  Google Scholar 

  73. Liu TY, Ma Y, Yu SF, Shi J, Xue S (2011) The effect of ball milling treatment on structure and porosity of maize starch granule. Inno Food Sci Emerg Technol 12:586–593

    Article  CAS  Google Scholar 

  74. Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464

    Article  CAS  PubMed  Google Scholar 

  75. Andrade LA, Nunes CA, Pereira J (2015) Relationship between the chemical components of taro rhizome mucilage and its emulsifying property. Food Chem 178:331–338

    Article  CAS  PubMed  Google Scholar 

  76. Santos C, Silva CJ, Büttel Z, Guimarães R, Pereira SB, Tamagnini P, Zille A (2014) Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr Polym 99:584–592

    Article  CAS  PubMed  Google Scholar 

  77. Kharazmi A, Faraji N, Hussin RM, Saion E, Yunus WMM, Behzad K (2015) Structural, optical, opto-thermal and thermal properties of zns-pva nanofluids synthesized through a radiolytic approach. Beilstein J Nanotechnol 6:529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mansur HS, Oréfice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and pva-derived hybrids by small-angle x-ray scattering and ftir spectroscopy. Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  79. Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rmpb70 protein adsorption. Mat Res 9:185–191

    Article  Google Scholar 

  80. Popescu MC, Dogaru BI, Goanta M, Timpu D (2018) Structural and morphological evaluation of cnc reinforced pva/starch biodegradable films. Int J Biol Macromol 116:385–393

    Article  CAS  PubMed  Google Scholar 

  81. Zanela J, Shirai MA, Reis MO, Mali S, Grossmann MVE, Yamashita F (2015) Mixture design to develop biodegradable sheets with high levels of starch and polyvinyl alcohol. Starch 67:1011–1019

    Article  CAS  Google Scholar 

  82. Zanela J, Bilck AP, Casagrande M, Grossmann MVE, Yamashita F (2018) Polyvinyl alcohol (PVA) molecular weight and extrusion temperature in starch/pva biodegradable sheets. Polímeros 28:256–265

    Article  Google Scholar 

  83. Das K, Ray D, Bandyopadhyay NR, Gupta A, Sengupta S, Sahoo S, Mohanty A, Misra M (2010) Preparation and characterization of cross-linked starch/poly(vinyl alcohol) green films with low moisture absorption. Ind Eng Chem Res 49(5):2176–2185

    Article  CAS  Google Scholar 

  84. Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C Mater Biol Appl 28(4):539–548

    Article  CAS  Google Scholar 

  85. Orts WJ, Nobes GAR, Glenn GM, Gray GM, Imam S, Chiou BS (2007) Blends of starch with ethylene vinyl alcohol copolymers: effect of water, glycerol, and amino acids as plasticizers. Polym Adv Technol 18(8):629–635

    Article  CAS  Google Scholar 

  86. Sreekumar PA, Al-Harthi MA, De SK (2012) Effect of glycerol on thermal and mechanical properties of polyvinyl alcohol/starch blends. J Appl Polym Sci 123(1):135–142

    Article  CAS  Google Scholar 

  87. Thakore IM, Desai S, Sarawade BD, Devi S (2001) Studies on biodegradablility, morphology and thermo-mechanical properties of ldpe/modified starch blends. Eur Polym J 37(1):151–160

    Article  CAS  Google Scholar 

  88. Zhou XYY, Cui YF, Jia DM, Xie D (2009) Effect of a complex plasticizer on the structure and properties of the thermoplastic pva/starch blends. Polym Plast Tech Eng 48(5):489–495

    Article  CAS  Google Scholar 

  89. Tian H, Yan JA, Rajulu AV, Xiang A, Luo X (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523

    Article  CAS  PubMed  Google Scholar 

  90. Othman N, Azahari NA, Ismail H (2011) Thermal properties of polyvinyl alcohol (pvoh)/corn starch blend film. Malays Polym J 6:147–154

    Google Scholar 

  91. Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874

    Article  CAS  PubMed  Google Scholar 

  92. Zhang R, Wang X, Cheng M (2018) Preparation and characterization of potato starch film with various size of Nano-Sio2. Polymers 10:1172

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cassu SN, Felisberti MI (2005) Dynamic mechanical behavior and relaxations in polymers and polymeric blends. Quim Nova 28:255–263

    Article  Google Scholar 

  94. Costa NN, Lopes LF, Ferreira DF, Prado EML, Severi JA, Resende JA, Careta FP, Pimentel MC, Carreira LG, Cotrim SSOL, OreficeVillanova MAPRLJCO (2020) Polymeric films containing pomegranate peel extract based on pva/starch/paa blends for use as wound dressing: in vitro analysis and physicochemical evaluation. Mater Sci Eng C Mater Biol Appl 109:110643

    Article  CAS  PubMed  Google Scholar 

  95. Athawale VD, Lele V (2000) Thermal studies on granular maize starch and its graft copolymers with vinyl monomers. Starch 52:205–213

    Article  CAS  Google Scholar 

  96. Jain N, Singh VK, Chauhan S (2018) Dynamic and creep analysis of polyvinyl alcohol based films blended with starch and protein. J Polym Eng 39:35–47

    Article  Google Scholar 

  97. Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotech Adv 29:322–337

    Article  CAS  Google Scholar 

  98. Dutra JAP, Carvalho SG, Zampirolli ACD, Daltoé RD, Teixeira RM, Careta FP, Cotrim MAP, Orefice RL, Villanova JCO (2017) Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: preparation and preliminary evaluation. Eur J Pharm Biopharm 113:11–23

    Article  CAS  PubMed  Google Scholar 

  99. Güneş S, Tıhmınlıoğlu F (2017) Hypericum perforatum incorporated chitosan films as potential bioactive wound dressing material. Int J Biol Macromol 102:933–943

    Article  PubMed  Google Scholar 

  100. Karbowiak T, Debeaufort F, Voilley A (2006) Importance of surface tension characterization for food, pharmaceutical and packaging products: a review. Crit Rev Food Sci Nut 46:391–407

    Article  Google Scholar 

  101. Salleh MSN, Nor NNM, Mohd N (1809) Draman SFS (2017) water resistance and thermal properties of polyvinyl alcohol-starch fiber blend film. AIP Conf Proc 1:020045

    Google Scholar 

  102. Sriamornsak P, Wattanakorn N, Nunthanid J, Puttipipatkhachorn S (2008) Mucoadhesion of pectin as evidence by wettability and chain interpenetration. Carbohydr Polym 74:458–467

    Article  CAS  Google Scholar 

  103. Galdeano MC, Wilhelm AE, Mali S, Grossmann MVE (2013) Influence of thickness on properties of plasticized oat starch films. Braz Arc Biol Technol 56:637–644

    Article  CAS  Google Scholar 

  104. Hu Y, Topolkaraev V, Hiltner A, Baer E (2001) Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci 81:1624–1633

    Article  CAS  Google Scholar 

  105. Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3:511–529

    Article  Google Scholar 

  106. Domene-López D, Guillén MM, Martin-Gullon I, García-Quesada JC, Montalbán MG (2018) Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydr Polym 202:299–305

    Article  PubMed  Google Scholar 

  107. Souza AC, Benze R, Ferrão ES, Ditchfield C, Coelho ACV, Tadini CC (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Sci Technol 46:110–117

    Article  CAS  Google Scholar 

  108. Musa BH, Hameed NJ (2020) Study of the mechanical properties of polyvinyl alcohol/starch blends. Mater Today Proc 20:439–442

    Article  CAS  Google Scholar 

  109. Kamoun EA, Kenawy ERS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: pva-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monom Polym 12:197–220

    Article  CAS  Google Scholar 

  111. OECD 439 (2019) Test no. 439: In vitro skin irritation: reconstructed human epidermis test method. in Oecd guidelines for the testing of chemicals, Section4: Health Effects

  112. Alexandre N, Ribeiro J, Gärtner A, Pereira T, Amorim I, Fragoso J, Lopes A, Fernandes J, Santos JD, Maurício AC (2014) Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting - in vitro and in vivo studies. J Biom Mat Res Part A 102:4262–4275

    Google Scholar 

  113. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:1–5

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to LUCCAR (Laboratório de Ultraestrutura Celular Carlos Alberto Redins da UFES—Edital MCT/FINEP/CT-INFRA-PROINFA 01/2006) by SEM analysis. Graphical abstract was made in part using BioRender.

Funding

This work was supported by the FAPES (Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Brazil) under Grant Number 201/2019; by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) under finance code 001; and by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil) with scholarships.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by EMLP, GAP, JAPD, and DFC. The first draft of the manuscript was written by EMLP. Other authors supervised the work and corrected previous versions of the manuscript. All authors commented on previous versions and approved the final version of the manuscript.

Corresponding author

Correspondence to Janaina Cecília Oliveira Villanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors give consent for publication.

Ethical approval

Ethics Committee on the Use of Animals (ECUA-UFES): approval number 006/2019.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Prado, E.M.L., de Paula, G.A., Dutra, J.A.P. et al. Crude dry extract from Colocasia esculenta in association with poly(vinyl alcohol) as biomaterial to prepare bioactive wound dressing. Polym. Bull. 80, 4783–4812 (2023). https://doi.org/10.1007/s00289-022-04263-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04263-6

Keywords

Navigation