Skip to main content
Log in

pH-Sensitive poly (acrylic acid-co-acrylamide) anionic hydrogels for jejunum targeted drug delivery systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ionic hydrogels are favorable for drug delivery applications, and fluorescence probes have been employed to analyze drug carriers. In this work, we studied swelling properties of pH-sensitive poly (acrylic acid-co-acrylamide) P(AAc-co-AAm) hydrogels in the presence of 30 vol% AAc at different pH values by steady-state fluorescence technique. We introduced a hydrophilic fluorescence probe, pyranine 4 (4sPy), due to its emission spectrum independent of pH. 4sPy molecules were trapped in the P(AAc-co-AAm) hydrogel network during the gelation before the swelling process. We monitored the effect of pH on fluorescence intensities of 4sPy during in situ swelling processes and also compared the behavior of trapped 4sPy molecules with the behavior of trapped drug carriers in a controlled drug delivery system. Most of the 4sPy molecules were released out from the hydrogels at high pH, such as drug molecules in the drug delivery system. Our results indicated that these hydrogels reached the maximum swelling ratio at pH = 9. The cooperative diffusion coefficient, D, was found using in situ fluorescence and gravimetric results as nearly 10−8 m2/s for different pH values that are comparable to the diffusion coefficient of drug molecules in drug delivery systems in the literature. Scanning electron microscope results indicated the change in morphology of anionic hydrogels swollen at different pH values. These results showed that P(AAc-co-AAm) hydrogels could be applicable for jejunum targeted drug delivery systems, and the 4sPy can be a candidate probe to monitor the drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  Google Scholar 

  2. Van der Linden HJ, Herber S, Olthuis W, Bergveld P (2003) Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 128:325–331. https://doi.org/10.1039/b210140h

    Article  CAS  PubMed  Google Scholar 

  3. Osada Y, Kajiwara K (2001) Gels handbook. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-394690-4.X5073-7

    Book  Google Scholar 

  4. Jia HZ, Zhu JY, Wang XL, Cheng H, Chen G, Zhao YF, Zeng X, Feng J, Zhang XZ, Zhuo RX (2014) A boronate-linked linear-hyperbranched polymeric nano vehicle for pH-dependent tumor-targeted drug delivery. Biomaterials 35:5240–5249. https://doi.org/10.1016/j.biomaterials.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  5. Jiang F, Chen S, Cao Z, Wang G (2016) A photo, temperature, and pH-responsive spiropyran-functionalized polymer: synthesis, self-assembly and controlled release. Polymer 83:85–91. https://doi.org/10.1016/j.polymer.2015.12.027

    Article  CAS  Google Scholar 

  6. Hibbins AR, Kumar P, Choonara YE, Kondiah PD, Marimuthu T, Toit LCD, Pillay V (2017) Design of a versatile pH-responsive hydrogel for potential oral delivery of gastric-sensitive bioactives. Polymers 9:474–492. https://doi.org/10.3390/polym9100474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kroh C, Wuchrer R, Günther M, Härtling T, Gerlach G (2018) Evaluation of the pH-sensitive swelling of a hydrogel by means of a plasmonic sensor substrate. J Sens Sens Syst 7:51–55. https://doi.org/10.5194/jsss-7-51-2018

    Article  Google Scholar 

  8. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today 7:569–579. https://doi.org/10.1016/s1359-6446(02)02255-9

    Article  CAS  PubMed  Google Scholar 

  9. Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, Sonsudin F, Abouloula CN (2017) pH-sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 9:137–174. https://doi.org/10.3390/polym9040137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Şolpan D, Duran S, Saraydin D, Güven O (2003) Adsorption of methyl violet in aqueous solutions by poly(acrylamide-co-acrylic acid) hydrogels. Radiat Phys Chem 66:117–127. https://doi.org/10.1016/s0969-806x(02)00384-5

    Article  Google Scholar 

  11. Vernon B, Kim S, Bae Y (1999) Insulin release from islets of Langerhans entrapped in a poly(N-isopropyl acrylamide-co-acrylic acid) polymer gel. J Biomater Sci Polym Ed 10:183–198. https://doi.org/10.1163/156856299x00126

    Article  CAS  PubMed  Google Scholar 

  12. Mutalabisin M, Chatterjee B, Jaffri J (2018) pH-responsive polymers in drug delivery. Res J Pharm Technol 11:5115–5122. https://doi.org/10.5958/0974-360x.2018.00934.4

    Article  Google Scholar 

  13. Bolla P, Rodriguez V, Kalhapure R, Kolli C, Andrews S, Renukuntla J (2018) A review on pH and temperature-responsive gels and other less explored drug delivery systems. J Drug Delivery Sci Technol 46:416–435. https://doi.org/10.1016/j.jddst.2018.05.037

    Article  CAS  Google Scholar 

  14. Zhou X, Weng L, Chen Q, Zhang J, Shen D, Li Z, Shao M, Xu J (2003) Investigation of pH sensitivity of poly(acrylic acid-co-acrylamide) hydrogel. Polym Int 52:1153–1157. https://doi.org/10.1002/pi.1207

    Article  CAS  Google Scholar 

  15. Nath J, Chowdhury A, Ali I, Dolui SW (2019) Development of a gelatin-g-poly(acrylic acid-co-acrylamide)–montmorillonite superabsorbent hydrogels for in vitro controlled release of vitamin B12. J Appl Polym Sci 136:47596–47607. https://doi.org/10.1002/app.47596

    Article  CAS  Google Scholar 

  16. Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, Bradley M, Zhang R (2018) Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B 6:510–517. https://doi.org/10.1039/C7TB01851G

    Article  CAS  PubMed  Google Scholar 

  17. Kim D, Park K (2004) Swelling and mechanical properties of super porous hydrogels of poly(acrylamide-co-acrylic acid)/polyethyleneimine interpenetrating polymer networks. Polymer 45:189–196. https://doi.org/10.1016/j.polymer.2003.10.047

    Article  CAS  Google Scholar 

  18. Zhang JP, Li A, Wang AQ (2005) Study on superabsorbent composite. V. Synthesis, swelling behaviors, and application of poly(acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite. Polym Adv Technol 16:813–820. https://doi.org/10.1002/pat.657

    Article  CAS  Google Scholar 

  19. Thakur A, Wanchoo RK, Singh P (2011) Structural parameters and swelling behavior of pH-sensitive poly(acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25:181–194. https://doi.org/10.15255/CABEQ.2014.187

    Article  CAS  Google Scholar 

  20. Qu J, Zhao X, Ma PX, Guo B (2017) pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater 58:168–180. https://doi.org/10.1016/j.actbio.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  21. Qu J, Zhao X, Ma PX, Guo B (2018) Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized smart drug release. Acta Biomater 72:55–69. https://doi.org/10.1016/j.actbio.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  22. Liang Y, Zhao X, Ma PX, Gou B, Du Y, Han X (2019) pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan grafted dihydocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 15:224–234. https://doi.org/10.1016/j.jcis.2018.10.056

    Article  CAS  Google Scholar 

  23. Ray D, Mohapatra DK, Mohapatra RK, Mohanta GP, Sahoo PK (2008) Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel. J Biomater Sci Polym Ed 19:1487–1502. https://doi.org/10.1163/156856208786140382

    Article  CAS  PubMed  Google Scholar 

  24. Singh B, Bala R, Chauhan N (2008) In vitro release dynamics of model drugs from psyllium and acrylic acid-based hydrogels for the use in colon-specific drug delivery. J Mater Sci Mater Med 19:2771–2780. https://doi.org/10.1007/s10856-008-3406-5

    Article  CAS  PubMed  Google Scholar 

  25. Anwar M, Pervaiz F, Shoukat H, Noreen S, Shabbir K, Majeed A, Ijaz S (2021) Formulation and evaluation of an interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym Bull 78:59–80. https://doi.org/10.1007/s00289-019-03092-4

    Article  CAS  Google Scholar 

  26. Tian B, Liu S, Wu S, Lu W, Wang D, Jin L, Hu B, Li K, Wang Z, Quan Z (2017) pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf B 154:287–296. https://doi.org/10.1016/j.colsurfb.2017.03.024

    Article  CAS  Google Scholar 

  27. Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/9783527650002

    Book  Google Scholar 

  28. Jameson DM (2014) Introduction to Fluorescence. CRC Press, Boca Raton. https://doi.org/10.1021/b16502

    Book  Google Scholar 

  29. Aktaş DK, Evingür GA, Pekcan Ö (2007) Study on swelling of hydrogels (PAAm) at various temperatures using fluorescence technique. J Mater Sci 42:8481–8488. https://doi.org/10.1007/s10853-007-1764-x

    Article  CAS  Google Scholar 

  30. Aktaş DK, Evingür GA, Pekcan Ö (2009) A fluorescence study on the swelling of hydrogels (PAAm) at various cross-linker contents. Adv Polym Technol 28:215–223. https://doi.org/10.1002/adv.20163

    Article  CAS  Google Scholar 

  31. Kaya D, Pekcan Ö, Yılmaz Y (2004) Direct test of the critical exponents at the sol-gel transition. Phys Rev E 69:016117–016127. https://doi.org/10.1103/physreve.69.016117

    Article  Google Scholar 

  32. Yılmaz Y, Uysal N, Gelir A, Güney O, Aktaş DK, Göğebakan S, Öner A (2009) Elucidation of multiple-point interactions of pyranine fluoroprobe during the gelation. Spectrochim Acta Part A Mol Biomol Spectrosc 72:332–338. https://doi.org/10.1016/j.saa.2008.09.012

    Article  CAS  Google Scholar 

  33. Shibayama M, Tanaka T (2005) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62. https://doi.org/10.1007/3-540-56791-7_1

    Article  Google Scholar 

  34. Bartil T, Bounekhel M, Cedric C, Jeerome R (2007) Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives. Acta Pharm 57:301–314. https://doi.org/10.2478/v10007-007-0024-6

    Article  CAS  PubMed  Google Scholar 

  35. Di Cagno MP, Clarelli F, Våbenø J, Lesley C, Rahman SD, Cauzzo J, Franceschinis E, Realdon N, Stein PC (2018) Experimental determination of drug diffusion coefficients in unstirred aqueous environments by temporally resolved concentration measurements. Mol Pharm 15:1488–1494. https://doi.org/10.1021/acs.molpharmaceut.7b01053

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi K, Mitsuyoshi Y, Kamei T, Shimanouchi T, Suga K, Okamoto Y, Nakamura H, Umakoshi H (2018) Design of pyrene-fatty acid conjugates for real-time monitoring of drug delivery and controllability of drug release. ACS Omega 3:3572–3580. https://doi.org/10.1021/acsomega.7b02061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Istanbul Technical University (ITU) under grand TGA-2018-41020. We would like to thank Biorender.com, which provided Fig. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Kaya Aktaş.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aktaş, D.K., Öztekin, F. pH-Sensitive poly (acrylic acid-co-acrylamide) anionic hydrogels for jejunum targeted drug delivery systems. Polym. Bull. 80, 2801–2813 (2023). https://doi.org/10.1007/s00289-022-04188-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04188-0

Keywords

Navigation