Skip to main content
Log in

Magnetic red mud/chitosan based bionanocomposites for adsorption of Cr(VI) from aqueous solutions: synthesis, characterization and adsorption kinetics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Magnetic red mud/chitosan (MRM/CS) based bionanocomposites were prepared by the neutralization method, and this method had the advantages of simplicity, low-cost and eco-friendly. The adsorbents were characterized by XRD, FTIR and VSM analysis. The effects of various parameters, such as RM addition amounts, pH, concentration, temperature, time and co-existing metal ions, on the adsorption of Cr(VI) were studied. Moreover, adsorption kinetic, isotherm and thermodynamic of the Cr(VI) adsorption were analyzed. The results show that the MRM/CS composite has good recoverability (8.56 emu·g−1) and adsorption performance (7.79 mg·g−1, 303 K, pH = 3). The process of the adsorption reaction conforms to the Langmuir model and the pseudo-second-order kinetic model, suggesting that the adsorption of Cr(VI) ions on the surface of CS-based adsorbents are monolayer adsorption and chemisorption. Thermodynamic study reveals that the adsorption is spontaneous and endothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Esfandian H, Alizadeh M, Katal R (2012) Synthesis of PolyAniline nanocomposite and its application for chromium removal from aqueous solution. J Vinyl Addit Techn 18:250–260. https://doi.org/10.1002/vnl.20310

    Article  CAS  Google Scholar 

  2. Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J Hazard Mater 223:1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054

    Article  CAS  Google Scholar 

  3. Xu H, Liu Y, Liang H, Gao C, Qin J, You L, Wang R, Li J, Yang S (2020) Adsorption of Cr(VI) from aqueous solutions using novel activated carbon spheres derived from glucose and sodium dodecylbenzene sulfonate. Sci Total Environ 759:143457. https://doi.org/10.1016/j.scitotenv.2020.143457

    Article  CAS  Google Scholar 

  4. Padervand M, Asgarpour F, Akbari A, Eftekhari Sis B, Lammel G (2019) Hexagonal Core–Shell SiO2[–MOYI]Cl–]Ag Nanoframeworks for efficient photodegradation of the environmental pollutants and pathogenic Bacteria. J Inorg Organomet P 29:1314–1323. https://doi.org/10.1007/s10904-019-01095-2

    Article  CAS  Google Scholar 

  5. He Y, Zheng T, Hao L, Wang P (2013) Sorption of Cr(VI) from wastewater using modified chitosan. Adv Mater Res 777:106–111. https://doi.org/10.4028/www.scientific.net/AMR.777.106

    Article  CAS  Google Scholar 

  6. Zhong X, Lu Z, Liang W, Hu B (2020) The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J Hazard Mater 393:122353. https://doi.org/10.1016/j.jhazmat.2020.122353

    Article  CAS  Google Scholar 

  7. Liu X-q, Zhao X-x, Liu Y, Zhang T-a (2021) Review on preparation and adsorption properties of chitosan and chitosan composites. Polym Bull. https://doi.org/10.1007/s00289-021-03626-9

    Article  Google Scholar 

  8. Eftekhari-Sis B, Akbari A, Motlagh PY, Bahrami Z, Arsalani N (2018) Dye adsorption on cubic polyhedral oligomeric Silsesquioxane-based Poly(acrylamide-co-itaconic acid) hybrid nanocomposites: kinetic, thermodynamic and isotherms studies. J Inorg Organomet P 28(5):1728–1738. https://doi.org/10.1007/s10904-018-0820-0

    Article  CAS  Google Scholar 

  9. Zhang T, Zhai X, Zeng M (2016) Application of chitosan in hydrometallurgy and environmental protection. Science Press, China

    Google Scholar 

  10. Akbari A, Arsalani N (2016) Preparation and characterization of novel hybrid nanocomposites by free radical copolymerization of vinyl pyrrolidone with incompletely condensed Polyhedral Oligomeric Silsesquioxane. J Inorg Organomet P 26(3):536–544. https://doi.org/10.1007/s10904-016-0340-8

    Article  CAS  Google Scholar 

  11. Soleymani M, Akbari A, Mahdavinia GR (2019) Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA. Polym Bull 76(5):2321–2340. https://doi.org/10.1007/s00289-018-2480-1

    Article  CAS  Google Scholar 

  12. Liu X, Zhang Y, Liu Y, Ta Z (2021) Green method to synthesize magnetic zeolite/chitosan composites and adsorption of hexavalent chromium from aqueous solutions. Int J Biol Macromol 194:746–754. https://doi.org/10.1016/j.ijbiomac.2021.11.121

    Article  CAS  Google Scholar 

  13. Zhang S, Liu C, Luan Z, Peng X, Ren H, Wang J (2008) Arsenate removal from aqueous solutions using modified red mud. J Hazard Mater 152(2):486–492. https://doi.org/10.1016/j.jhazmat.2007.07.031

    Article  CAS  Google Scholar 

  14. Çoruh S, Ergun ON (2010) Copper adsorption from aqueous solutions by using red mud – An aluminium industry waste. In: Gökçekus H, TürkerJames U, LaMoreaux W (eds.) Survival and sustainability. pp 1275–1282. https://doi.org/10.1007/978-3-540-95991-5_119

  15. Li Y, Wang J, Luan Z, Liang Z (2010) Arsenic removal from aqueous solution using ferrous based red mud sludge. J Hazard Mater 177(1–3):131–137. https://doi.org/10.1016/j.jhazmat.2009.12.006

    Article  CAS  Google Scholar 

  16. Zhirong L, Huanjia X, Shaoqi Z (2013) Adsorption behavior of U(VI)/Th(IV) by acid-leached red mud: a comparative study. Korean J Chem Eng 30(5):1091–1096. https://doi.org/10.1007/s11814-013-0027-6

    Article  CAS  Google Scholar 

  17. Pichinelli BC, da Silva MSG, da Conceição FT, Menegário AA, Antunes MLP, Navarro GRB, Moruzzi RB (2017) Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO3)2-neutralised red mud. Water Air Soil Pollut 228(1):1–13. https://doi.org/10.1007/s11270-016-3208-1

    Article  CAS  Google Scholar 

  18. Akbari A, Arsalani N, Eftekhari-Sis B, Amini M, Gohari G, Jabbari E (2019) Cube-octameric silsesquioxane (POSS)-capped magnetic iron oxide nanoparticles for the efficient removal of methylene blue. Front Chem Sci Eng 13(3):563–573. https://doi.org/10.1007/s11705-018-1784-x

    Article  CAS  Google Scholar 

  19. Deng H, Wei Z, Wang X (2017) Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid. Carbohydr Polym 157:1190–1197. https://doi.org/10.1016/j.carbpol.2016.10.087

    Article  CAS  Google Scholar 

  20. Elsabee MZ, Morsi RE, Al-Sabagh A (2009) Surface active properties of chitosan and its derivatives. Colloids Surf, B 74(1):1–16. https://doi.org/10.1016/j.colsurfb.2009.06.021

    Article  CAS  Google Scholar 

  21. Pavinatto FJ, Caseli L, Oliveira ON Jr (2010) Chitosan in nanostructured thin films. Biomacromol 11(8):1897–1908. https://doi.org/10.1021/bm1004838

    Article  CAS  Google Scholar 

  22. Tachikawa S, Noguchi A, Tsuge T, Hara M, Odawara O, Wada H (2011) Optical properties of ZnO nanoparticles capped with polymers. Materials (Basel) 4(6):1132–1143. https://doi.org/10.3390/ma4061132

    Article  CAS  Google Scholar 

  23. Castaldi P, Santona L, Cozza C, Giuliano V, Abbruzzese C, Nastro V, Melis P (2005) Thermal and spectroscopic studies of zeolites exchanged with metal cations. J Mol Struct 734(1):99–105. https://doi.org/10.1016/j.molstruc.2004.09.009

    Article  CAS  Google Scholar 

  24. Annadurai G, Ling LY, Lee JF (2008) Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. J Hazard Mater 152(1):337–346. https://doi.org/10.1016/j.jhazmat.2007.07.002

    Article  CAS  Google Scholar 

  25. Castaldi P, Silvetti M, Santona L, Enzo S, Melis P (2008) XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals. Clays Clay Miner 56(4):461–469. https://doi.org/10.1346/CCMN.2008.0560407

    Article  CAS  Google Scholar 

  26. Zimmermann AC, Mecabo A, Fagundes T, Rodrigues CA (2010) Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe). J Hazard Mater 179(1–3):192–196. https://doi.org/10.1016/j.jhazmat.2010.02.078

    Article  CAS  Google Scholar 

  27. Liu X, Liu Y, Zhang T (2021) Preparation of magnetic zeolite/chitosan composite using silane as modifier for adsorption of Cr(VI) from aqueous solutions. J Vinyl Addit Techn 27(3):640–654. https://doi.org/10.1002/vnl.21839

    Article  CAS  Google Scholar 

  28. Ma Y, Xing D, Shao W, Du X, La P (2017) Preparation of polyamidoamine dendrimers functionalized magnetic graphene oxide for the adsorption of Hg(II) in aqueous solution. J Colloid Interface Sci 505:352–363. https://doi.org/10.1016/j.jcis.2017.05.104

    Article  CAS  Google Scholar 

  29. Gu F, Geng J, Li M, Chang J, Cui Y (2019) Synthesis of Chitosan-Ignosulfonate composite as an adsorbent for dyes and metal ions removal from wastewater. ACS Omega 4(25):21421–21430. https://doi.org/10.1021/acsomega.9b03128

    Article  CAS  Google Scholar 

  30. Lv L, Xie Y, Liu G, Liu G, Yu J (2014) Removal of perchlorate from aqueous solution by cross-linked Fe(III)-chitosan complex. J Environ Sci 26(4):792–800. https://doi.org/10.1016/S1001-0742(13)60519-7

    Article  CAS  Google Scholar 

  31. Mindivan F, Gül ÜD, Göktaş M (2021) Application of graphene-based adsorbents in the treatment of dye-contaminated wastewater; kinetic and isotherm studies. J Vinyl Addit Techn 27(3):485–496. https://doi.org/10.1002/vnl.21821

    Article  CAS  Google Scholar 

  32. Surikumaran H, Mohamad S, Sarih NM (2014) Molecular imprinted polymer of methacrylic acid functionalised β-cyclodextrin for selective removal of 2,4-dichlorophenol. Int J Mol Sci 15(4):6111–6136. https://doi.org/10.3390/ijms15046111

    Article  CAS  Google Scholar 

  33. Duman O, Özcan C, Gürkan Polat T, Tunç S (2019) Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites. Environ Pollut 244:723–732. https://doi.org/10.1016/j.envpol.2018.10.071

    Article  CAS  Google Scholar 

  34. Katal R, Ghiass M, Esfandian H (2011) Application of nanometer size of polypyrrole as a suitable adsorbent for removal of Cr(VI). J Vinyl Addit Techn 17:222–230. https://doi.org/10.1002/vnl.20287

    Article  CAS  Google Scholar 

  35. Sharma YC, Srivastava V (2011) Comparative studies of removal of Cr(VI) and Ni(II) from aqueous solutions by magnetic nanoparticles. J Chem Eng Data 56(4):819–825. https://doi.org/10.1021/je100428z

    Article  CAS  Google Scholar 

  36. Nguyen TTY, Nguyen PA, Nguyen TTV, Nguyen T, Huynh KPH (2018) Adsorption of Cr(VI) by material synthesized from red mud and rice husk ash. Vietnam J Sci, Technol Eng 60(4):3–7. https://doi.org/10.31276/VJSTE.60(4).03-07

    Article  Google Scholar 

  37. Tsamo C, Djomou Djonga PN, Dangwang Dikdim JM, Kamga R (2018) Kinetic and equilibrium studies of Cr(VI), Cu(II) and Pb(II) removal from aqueous solution using red mud, a low-cost adsorbent. Arab J Sci Eng 43(5):2353–2368. https://doi.org/10.1007/s13369-017-2787-5

    Article  CAS  Google Scholar 

  38. Ma M, Lu Y, Chen R, Ma L, Wang Y (2014) Hexavalent chromium removal from water using heat-acid activated red mud. Open J Appli Sci 4(5):275–284. https://doi.org/10.4236/ojapps.2014.45027

    Article  CAS  Google Scholar 

  39. Aydın YA, Aksoy ND (2009) Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chem Eng J 151:188–194. https://doi.org/10.1016/j.cej.2009.02.010

    Article  CAS  Google Scholar 

  40. Qian S, Huang G, Jiang J, He F, Wang Y (2000) Studies of adsorption behavior of crosslinked chitosan for Cr(VI), Se(VI). J Appl Polym Sci 77(14):3216–3219. https://doi.org/10.1002/1097-4628(20000929)77:14%3c3216::AID-APP240%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  41. Hu B, Ai Y, Jin J, Hayat T, Alsaedi A, Zhuang L, Wang X (2020) Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2(1):47–64. https://doi.org/10.1007/s42773-020-00044-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51774078, U1710257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting′an Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Y., Liu, Y. et al. Magnetic red mud/chitosan based bionanocomposites for adsorption of Cr(VI) from aqueous solutions: synthesis, characterization and adsorption kinetics. Polym. Bull. 80, 2099–2118 (2023). https://doi.org/10.1007/s00289-022-04137-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04137-x

Keywords

Navigation