Skip to main content

Advertisement

Log in

Preparation of UV-LED curable antifouling and flame retardant superhydrophobic coatings for polyethylene terephthalate surface protection

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In order to improve the vulnerability, flammability and mechanical properties of polyethylene terephthalate (PET) films, γ-methacryloxy-propyltrimethoxysilane (KH-570)-modified nano SiO2 (KH-570/ SiO2 NPs, A) and (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (FAS-17) modified nano SiO2 (F17-SiO2 NPs, B) were synthesized and blended with ultraviolet curing (UV curing) components to prepare superhydrophobic coatings for PET surface protection. The coatings were characterized by contact angle (CA) measurement, flame retardant performance test, field emission scanning electron microscope and atomic force microscope (AFM). The CAs of the coatings on the PET film surface reached 160.3° with 15% UV component (10% reactive diluents and 5% photoinitiators) and 85% modified nano SiO2 (A and B). Moreover, the films displayed excellent properties, including 2 H of pencil hardness, 1 grade of adhesion, 0.052 g • 100 r−1 of loss wear resistance, V-0 grade of flame retardant. The SEM and AFM images displayed that superhydrophobic film with micro-nano roughness structures carrying papillary nanoparticles and pit-like concave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lu MZ, Huang S, Chen S, Ju Q, Xiao M, Peng XH, Wang SJ, Meng YZ (2018) Transparent and super-gas-barrier PET film with surface coated by a polyelectrolyte and borax. Polym J 1(1):239–250. https://doi.org/10.1038/s41428-017-0015-5

    Article  CAS  Google Scholar 

  2. Sun B, Zhang XJ, Zhou GD, Yu T, Mao SS, Zhu SH, Zhao Y, Xia YD (2018) A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate. J Colloid Interf Sci 520:19–24. https://doi.org/10.1016/j.jcis.2018.03.001

    Article  CAS  Google Scholar 

  3. Djapovic M, Milivojevic D, Ilic-Tomic T, Lješević M, Nikolaivits E, Topakas MV, Jasmina NR (2021) Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: toxicity study and application in discovery of novel PETases. Chemosphere 275:130005. https://doi.org/10.1016/j.chemosphere.2021.130005

    Article  CAS  Google Scholar 

  4. Wiacek AE, Jurak M, Gozdecka A, Worzakowska M (2017) Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids Surf A Physicochem Eng Asp 532(5):323–331. https://doi.org/10.1016/j.colsurfa.2017.04.074

    Article  CAS  Google Scholar 

  5. Gotoh K, Kobayashi Y, Yasukawa A, Ishigami Y (2012) Surface modification of PET films by atmospheric pressure plasma exposure with three reactive gas sources. Colloid Polym Sci 290(11):1005–1014. https://doi.org/10.1007/s00396-012-2600-7

    Article  CAS  Google Scholar 

  6. Tian S, Tang HR, Wang QS, Yuan XL, Ma Q, Wang MS (2021) Evaluation and optimization of blanket production from recycled polyethylene terephthalate based on the coordination of environment, economy, and society. Sci Total Environ 772:145049. https://doi.org/10.1016/j.scitotenv.2021.145049

    Article  CAS  Google Scholar 

  7. Jiang DW, Murugadoss V, Wang Y, Lin J, Ding T, Wang ZC, Shao Q et al (2019) Electromagnetic interference shielding polymers and nanocomposites-a-review. Cellulose 26:4301–4312. https://doi.org/10.1007/s10570-019-02379-z

    Article  CAS  Google Scholar 

  8. Li YS, Ren M, Lv PF, Liu YZ, Shao H, Wang C, Tang CY, Zhou YL, Shuai MB (2019) Robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization. J Mater Chem A 7:7242–7255. https://doi.org/10.1039/C8TA11111A

    Article  CAS  Google Scholar 

  9. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S (2014) Sol-gel processing of silica nanoparticles and their applications. Adv Coll Interf Sci 214:17–37. https://doi.org/10.1016/j.cis.2014.10.007

    Article  CAS  Google Scholar 

  10. Wang ST, Liu KS, Yao X, Jiang L (2015) Bioinspired surfaces with superwettability: new insight on theory, design, and applications. Chem Rev 115:8230–8293. https://doi.org/10.1021/cr400083y

    Article  CAS  Google Scholar 

  11. Ma QL, Cheng HF, Fane AG, Wang R, Zhang H (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12:2186–2202. https://doi.org/10.1002/small.201503685

    Article  CAS  Google Scholar 

  12. Li XY, Zhao SP, Hu WH, Zhang X, Pei L, Wang Z (2019) Robust superhydrophobic surface with excellent adhesive properties based on enzoxazine /epoxy/mesoporous SiO2. Appl Surf Sci 481:374–378. https://doi.org/10.1016/j.apsusc.2019.03.114

    Article  CAS  Google Scholar 

  13. Li LH, Bai YY, Li LL, Wang SQ, Zhang T (2017) A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv Mater 29:1702517. https://doi.org/10.1002/adma.201702517

    Article  CAS  Google Scholar 

  14. Sun YH, Guo ZG (2019) Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons 4:52–76. https://doi.org/10.1039/c8nh00223a

    Article  CAS  Google Scholar 

  15. Cho EC, Chang-Jian CW, Chen HC, Chuang KS, Zheng JH, Hsiao YS, Lee KC, Huang JH (2017) Robust multifunctional superhydrophobic coatings with enhanced water/oil separation, self-cleaning, anti-corrosion, and anti-biological adhesion. Chem Eng J 314:347–357. https://doi.org/10.1016/j.cej.2016.11.145

    Article  CAS  Google Scholar 

  16. Zhou CL, Chen ZD, Yang H, Hou K, Zeng XJ, Zheng YF, Cheng J (2017) Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Appl Mater Interf 9(10):9184–9194. https://doi.org/10.1021/acsami.7b00412

    Article  CAS  Google Scholar 

  17. Lai YK, Huang JY, Cui ZQ, Ge MZ, Zhang KQ, Chen Z, Chi LF (2016) Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12(16):2203–2224. https://doi.org/10.1002/smll.201501837

    Article  CAS  Google Scholar 

  18. Zheng N, Zhang X, Min X, Liu J, Li WG, Ji XH (2019) Design of robust superhydrophobic coatings using a novel fluorinated polysiloxane with UV/moisture dual cure system. React Funct Polym 143:104329. https://doi.org/10.1016/j.reactfunctpolym.2019.104329

    Article  CAS  Google Scholar 

  19. Wang WJ, Liu RP, Chi HJ, Zhang T, Xu ZG, Zhao Y (2019) Durable superamphiphobic and photocatalytic fabrics: tackling the loss of super-non-wettability due to surface organic contamination. ACS Appl Mater Interf 11(38):35327–35332. https://doi.org/10.1021/acsami.9b12141

    Article  CAS  Google Scholar 

  20. Li YS, Ren M, Lv PF, Liu YZ, Shao H, Wang C, Tang CY, Zhou YL, Shuai MB (2019) A robust and flexible bulk superhydrophobic material from silicone rubber/silica gel prepared by thiol-ene photopolymerization. J Mater Chem A 7(12):7242–7255. https://doi.org/10.1039/c8ta11111a

    Article  CAS  Google Scholar 

  21. Feng YF, Peng C, Li YD, Hu JB, Deng QH, Wu Q, Xu ZC (2019) Superhydrophobic nanocomposite coatings with photoinitiated three-dimensional networks based on reactive graphene nanosheet-induced self-wrinkling patterned surfaces. J Colloid Interf Sci 536:149–159. https://doi.org/10.1016/j.jcis.2018.10.046

    Article  CAS  Google Scholar 

  22. Zhang H, Lu X, Xin Z (2018) Preparation of superhydrophobic polybenzoxazine/SiO2 films with self-cleaning and ice delay properties. Prog Org Coat 123:254–260. https://doi.org/10.1016/j.porgcoat.2018.03.026

    Article  CAS  Google Scholar 

  23. Nahum T, Dodiuk H, Dotan A, Kenig S, Lellouche JP (2015) Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles. J Appl Polym Sci 1664:4097–4105. https://doi.org/10.1063/1.4918436

    Article  Google Scholar 

  24. Li YS, Shao H, Lv PF, Tang CY, He ZK, Zhou YL, Shuai MB, Mei J, Lau WM (2018) Fast preparation of mechanically stable superhydrophobic surface by UV cross-linking of coating onto oxygen-inhibited layer of substrate. Chem Eng J 338:440–449. https://doi.org/10.1016/j.cej.2018.01.044

    Article  CAS  Google Scholar 

  25. Kang TM, Tang LY, Qu JQ (2018) Preparation and properties of high hardness ultraviolet curable polyethylene terephthalates surface coatings modified with octavinyl-polyhedral oligomeric silsesquioxane. Coatings 8(11):411–413. https://doi.org/10.3390/coatings8110411

    Article  CAS  Google Scholar 

  26. Slovensk P, Zeleňáková A, Kollár P et al (2020) Preparation and characterization of Fe based soft magnetic composites coated by SiO2 layer prepared by stber method. Acta Phys Pol A 137(5):872–875. https://doi.org/10.12693/APhysPolA.137.872

    Article  Google Scholar 

  27. Madden D, Curtin T, Hanrahan JP, Tobin J (2016) CO2 sorption performance by aminosilane functionalized spheres prepared via co-condensation and post-synthesis methods. AIChE J 62(8):2825–2832. https://doi.org/10.1002/aic.15253

    Article  CAS  Google Scholar 

  28. Ruiz-Caas MC, Corredor LM, Quintero HI, Manrique E, Bohórquez ARR (2020) Molecules morphological and structural properties of amino-functionalized fumed nanosilica and its comparison with nanoparticles obtained by modified stber method. Molecules 25(12):2868. https://doi.org/10.3390/molecules25122868

    Article  CAS  Google Scholar 

  29. Park YK, Lee S, Yoon S, Lee JW (2017) Scalable mesoporous silicon-carbon composite prepared by stber method and magnesiothermic reduction for high power anode of lithium-ion batteries. J Nanosci Nanotechnol 17(11):8468–8474. https://doi.org/10.1166/jnn.2017.15180

    Article  CAS  Google Scholar 

  30. Leem G, Zhang S, Jamison AC, Galstyan E, Rusakova I, Lorenz B (2010) Light-induced covalent immobilization of monolayers of magnetic nanoparticles on hydrogen-terminated silicon. ACS Appl Mater Interf 2(10):2789–2796. https://doi.org/10.1021/am100457v

    Article  CAS  Google Scholar 

  31. Du Y, Xu J, Sakizadeh JD, Weiblen DG, McCormick A (2017) Modulus- and surface-energy-tunable thiol-ene for UV micromolding of coatings. ACS Appl Mater Interf 9(29):24976–24986. https://doi.org/10.1021/acsami.7b06339

    Article  CAS  Google Scholar 

  32. Chen SS, Li X, Li Y, Sun JQ (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4):4070–4076. https://doi.org/10.1021/acsnano.5b00121

    Article  CAS  Google Scholar 

  33. Zhong XM, Wyman I, Yang H, Wang JB, Wu X (2016) Preparation of robust anti-smudge coatings via electrophoretic deposition. Chem Eng J 302:744–751. https://doi.org/10.1016/j.cej.2016.05.112

    Article  CAS  Google Scholar 

  34. Wu ZJ, Tang LY, Dai JT, Qu JQ (2019) Synthesis and properties of fluorinated non-isocyanate polyurethanes coatings with good hydrophobic and oleophobic properties. J Coat Technol Res 16(5):1233–1241. https://doi.org/10.1007/s11998-019-00195-5

    Article  CAS  Google Scholar 

  35. Bradley JS, Ethan FT, Hoff LX, Goetz JT, Patton DL (2013) Superhydrophobic hybrid inorganic−organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization. ACS Appl Mater Interf 5(5):1811–1817. https://doi.org/10.1021/am303165e

    Article  CAS  Google Scholar 

  36. Eken AE, Ozenbas M (2009) Characterization of nanostructured magnetite thin films produced by sol-gel processing. J Sol-Gel Sci Tech 50(3):321–327. https://doi.org/10.1007/s10971-009-1971-9

    Article  CAS  Google Scholar 

  37. Kim SW (2011) Characterization of UV curable hybrid hard coating materials prepared by sol-gel method. Korean J Chem Eng 28(1):298–303. https://doi.org/10.1007/s11814-010-0338-9

    Article  CAS  Google Scholar 

  38. Zhang YY, Ge Q, Yang LL (2015) Durable superhydrophobic PTFE films through the introduction of micro and nanostructured pores. Appl Surface Sci 339:151–157. https://doi.org/10.1016/j.apsusc.2015.02.143

    Article  CAS  Google Scholar 

  39. Chang CC, Cheng LP, Huang FH, Lin CY, Hsieh CF, Wang WH (2010) Preparation and characterization of TiO2 hybrid sol for UV-curable high-refractive-index organic–inorganic hybrid thin films. J Sol-Gel Sci Technol 55(2):199–206. https://doi.org/10.1007/s10971-010-2233-6

    Article  CAS  Google Scholar 

  40. Qi YC, Li K, Li K, Hu B, Wang X (2017) The influence of tiny amount fluorine-containing acrylate on kinetics, morphology and properties free-radical/cationic hybrid UV-cured coatings. Prog Org Coat 112:44–50. https://doi.org/10.1016/j.porgcoat.2017.06.026

    Article  CAS  Google Scholar 

  41. Esmaeili E, Salavati-Niasari M, Mohandes F, Davar F, Seyghalkar H (2011) Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis. Chem Eng J 170(1):278–285. https://doi.org/10.1016/j.cej.2011.03.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21878109), Natural Science Foundation of Guangdong Province, China (No. 2020A1515010177), and the Science and Technology Program of Guangdong Province, China (No. 2020B1212070027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqing Qu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Kang, T., Tang, L. et al. Preparation of UV-LED curable antifouling and flame retardant superhydrophobic coatings for polyethylene terephthalate surface protection. Polym. Bull. 80, 309–330 (2023). https://doi.org/10.1007/s00289-021-04023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04023-y

Keywords

Navigation