Skip to main content

Advertisement

Log in

Additive manufacturing: a review on mechanical properties of polyjet and FDM printed parts

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Additive manufacturing offers flexibility in designing, customizing, minimization of waste, manufacturing complex profiles and faster prototyping. Among these, polyjet and fused deposition modelling (FDM) process are widely employed to manufacture the parts for different applications. Hence, a comprehensive review on the mechanical properties of polyjet printed and FDM printed parts has been carried out in this paper. Under polyjet printing, influence of process parameters such as built orientation, built mode, finish type, part spacing and layer thickness on the mechanical properties has been discussed. Under FDM process, mechanical properties of important and potential polymeric materials such as acrylonitrile butadiene styrene, polylactic acid, polyether-ether-ketone and polyetherimide have been reviewed. Altogether, this paper gives an overview of mechanical properties of 3D printed parts, including a survey on selection of process parameters in polyjet process and materials selection in FDM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chapiro M (2016) Current achievements and future outlook for composites in 3D printing. Reinf Plast 60:372–375. https://doi.org/10.1016/j.repl.2016.10.002

    Article  Google Scholar 

  2. Leon De, Chen Q, Palaganas N, Palaganas J, Manapat J, Advincula R (2016) High performance polymer nano composites for additive manufacturing applications. React Funct Polym 103:141–155. https://doi.org/10.1016/j.reactfunctpolym.2016.04.010

    Article  CAS  Google Scholar 

  3. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites : a review and prospective. Comput Aided Des Compos Part B 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  4. Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162. https://doi.org/10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  5. Macdonald E, Salas R, Espalin D, Perez M, Aguilera E (2014) 3D printing for the rapid prototyping. IEEE Access 2:234–242. https://doi.org/10.1109/access.2014.2311810

    Article  Google Scholar 

  6. Stansbury J, Idacavage M (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32:54–64. https://doi.org/10.1016/j.dental.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  7. Mueller B (2012) Additive manufacturing technologies–rapid prototyping to direct digital manufacturing. Assem Autom. https://doi.org/10.1108/aa.2012.03332baa.010

    Article  Google Scholar 

  8. Kai CC (1994) Three-dimensional rapid prototyping technologies and key development areas. Comput Control Eng J 5:200–206. https://doi.org/10.1049/cce:19940407

    Article  Google Scholar 

  9. Li H, Wang T, Sun J, Yu Z (2018) The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties. Rapid Prototyp J 24:80–92. https://doi.org/10.1108/RPJ-06-2016-0090

    Article  Google Scholar 

  10. Sanatgar R, Campagne C, Nierstrasz V (2017) Investigation of the adhesion properties of direct 3D printing of polymers and nano composites on textiles: effect of FDM printing process parameters. Appl Surf Sci 403:551–563. https://doi.org/10.1016/j.apsusc.2017.01.112

    Article  CAS  Google Scholar 

  11. Melnikova R, Ehrmann AFK (2014) 3D printing of textile-based structures by fused deposition modelling (FDM) with different polymer materials. IOP Conf Series: Mater Sci Eng 62:012018. https://doi.org/10.1088/1757-899X/62/1/012018

    Article  CAS  Google Scholar 

  12. Melchels F, Feijen J, Grijpma D (2010) A review on stereolithography and itsapplications in biomedical engineering. Biomater 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  CAS  Google Scholar 

  13. Ifkovits J, Burdick J (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering. Tissue Eng 13:2369–2385. https://doi.org/10.1089/ten.2007.0093

    Article  CAS  PubMed  Google Scholar 

  14. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Cars 5:335–341. https://doi.org/10.1007/s11548-010-0476-x

    Article  CAS  Google Scholar 

  15. Wu G, Hsu S (2015) Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng 35:285–292. https://doi.org/10.1007/s40846-015-0038-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morris V, Nimbalkar S, Younesi M, McClellan P, Akkus O (2017) Medicine application, mechanical properties, cytocompatibility and manufacturability of Chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Ann Biomed Eng 45:286–296. https://doi.org/10.1007/s10439-016-1643-1

    Article  PubMed  Google Scholar 

  17. Bakarich S, Gorkin R, Panhuis M, Spinks G (2014) Three-dimensional printing fiber reinforced hydrogel composites. ACS Appl Mater Interf 6:15998–16006. https://doi.org/10.1021/am503878d

    Article  CAS  Google Scholar 

  18. Kalita S, Bose S, Hosick H, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modelling. Mater Sci Eng C 23:611–620. https://doi.org/10.1016/S0928-4931(03)00052-3

    Article  CAS  Google Scholar 

  19. Murphy S, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  20. Crivello J, Reichmanis E (2014) Photopolymer materials and processes for advanced technologies. Chem Mater 26:533–5548. https://doi.org/10.1021/cm402262g

    Article  CAS  Google Scholar 

  21. Lee J, An J, Chua C (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133. https://doi.org/10.1016/j.apmt.2017.02.004

    Article  Google Scholar 

  22. Mohammed J (2016) Applications of 3D printing technologies in oceanography. Method Oceanogr 17:97–117. https://doi.org/10.1016/j.mio.2016.08.001

    Article  Google Scholar 

  23. Liu R, Wang Z, Sparks T, Liou F, Newkirk J (2017) Aerospace applications of laser additive manufacturing. Laser Additi Manuf. https://doi.org/10.1016/B978-0-08-100433-3.00013-0

    Article  Google Scholar 

  24. Goh G, Agarwala S, Goh G, Dikshit V, Sing S, Yeong W (2017) Additive manufacturing in unmanned aerial vehicles (UAVs): challenges and potential. Aerosp Sci Technol 63:140–151. https://doi.org/10.1016/j.ast.2016.12.019

    Article  Google Scholar 

  25. Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200. https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  26. Monzon M, Ortega Z, Martinez A, Ortega F (2015) Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol 76:1111–1121. https://doi.org/10.1007/s00170-014-6334-1

    Article  Google Scholar 

  27. Sugavaneswaran M, Arumaikkannu G (2015) Analytical and experimental investigation on elastic modulus of reinforced additive manufactured structure. Mater Des 66:29–36. https://doi.org/10.1016/j.matdes.2014.10.029

    Article  Google Scholar 

  28. Bellini A, Güçeri S (2003) Mechanical characterization of parts fabricated using fused deposition modelling. Rap. Prototyp. J. 9:252–264. https://doi.org/10.1108/13552540310489631

    Article  Google Scholar 

  29. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  30. Kęsy A, Kotliński J (2010) Mechanical properties of parts produced by using polymer jetting technology. Arch Civil Mech Engg 10:37–50. https://doi.org/10.1016/S1644-9665(12)60135-6

    Article  Google Scholar 

  31. Blanco D, Fernandez P, Noriega A (2014) Nonisotropic experimental characterization of the relaxation modulus for PolyJet manufactured parts. J Mater Res 29:1876–1882. https://doi.org/10.1557/jmr.2014.200

    Article  CAS  Google Scholar 

  32. Mueller J, Shea K (2015) The effect of build orientation on the mechanical properties in inkjet 3d printing, Solid Freeform Fabrication Symposium, Austin, 983–992.

  33. Sugavaneswaran M, Arumaikkannu G (2014) Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Mater Des 54:779–785. https://doi.org/10.1016/j.matdes.2013.08.102

    Article  Google Scholar 

  34. Bass L, Meisel NA, Williams CB (2016) Exploring variability of orientation and aging effects in material properties of multi-material jetting parts. Rapid Prototyp J 22:826–834. https://doi.org/10.1108/RPJ-11-2015-0169

    Article  Google Scholar 

  35. Es-Said FOS, Noorani J, Mendelson R, Marloth M, Pregger BA (2007) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manufac Process 15:107–122. https://doi.org/10.1080/10426910008912976

    Article  Google Scholar 

  36. Majewski C, Hopkinson N (2010) Effect of section thickness and build orientation on tensile properties and material characteristics of laser sintered nylon-12 parts. Rapid Prototyp J 17:176–180. https://doi.org/10.1108/13552541111124743

    Article  Google Scholar 

  37. Raut S, Jatti VS, Khedkar NK, Singh TP (2014) Investigation of the effect of build orientation on mechanical properties and total cost of FDM parts. Proced Mater Sci 6:1625–1630. https://doi.org/10.1016/j.mspro.2014.07.146

    Article  CAS  Google Scholar 

  38. Gajdos I, Spišák E, Slota J, Kašcák Ľ (2013) Influence of path generation strategy on tensile properties of FDM prototypes. Appl Mech Mater 474:273–278. https://doi.org/10.7862/rm.2013.13

    Article  Google Scholar 

  39. Qu IV, Bass LB, Williams CB, Dillard DA (2018) Characterizing the effect of print orientation on interface integrity of multimaterial jetting additive manufacturing. Addit Manufac 22:447–461. https://doi.org/10.1016/j.addma.2018.05.036

    Article  CAS  Google Scholar 

  40. Lumpe TS, Mueller J, Shea K (2019) Tensile properties of multi-material interfaces in 3D printed parts. Mater Des 162:1–9. https://doi.org/10.1016/j.matdes.2018.11.024

    Article  Google Scholar 

  41. Rangarajan S, Sunitha K, AnnaMahesh A (2019) Analysis of part built orientation of the polyjet 3 d printed polymer component. Int J Innov Technol Expl Engg. 8(19):3355–3359. https://doi.org/10.35940/ijitee.I8958.078919

    Article  Google Scholar 

  42. Das SC, Ranganathan R, Murugan N (2018) Effect of build orientation on the strength and cost of PolyJet 3D printed parts. Rapid Prototyp J 24:832–839. https://doi.org/10.1108/RPJ-08-2016-0137

    Article  Google Scholar 

  43. Maroti Peter, Varga Peter, Abraham Hajnalka, Falk Gyorgy, Zsebe Tamas, Meiszterics Zoltan, Mano Sandor, Csernatony Zoltan, Rendeki Szilard, Nyitrai Miklos (2019) Printing orientation defines anisotropic mechanical properties in additive manufacturing of upper limb prosthetics. Mater Res Exp. 6:035403

    Article  Google Scholar 

  44. O’Neill P, Jolivet L, Kent NJ, Brabazon D (2017) Physical integrity of 3D printed parts for use as embossing tools. Adv Mater Process Technol 3:308–317. https://doi.org/10.1080/2374068X.2017.1330842

    Article  Google Scholar 

  45. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157

    Article  Google Scholar 

  46. Cazon A, Morer P, Matey L (2014) PolyJet technology for product prototyping: tensile strength and surface roughness properties. Proc I Mech E Part B: J Engg Manufac 228:1664–1675. https://doi.org/10.1177/0954405413518515

    Article  Google Scholar 

  47. Pugalendhi A, Ranganathan R, Chandrasekaran M (2019) Effect of process parameters on mechanical properties of VeroBlue material and their optimal selection in PolyJet technology. Int J Adv Manuf Technol 108:1049–1059. https://doi.org/10.1007/s00170-019-04782-z

    Article  Google Scholar 

  48. Arivazhagan Pugalendhi, Rajesh Ranganathan, Sivakumar Ganesan (2019) Impact of process parameters on mechanical behaviour in multi-material jetting. Mater Today Proceed. https://doi.org/10.1016/j.matpr.2019.12.106

  49. Moore J, Williams C (2012) Fatigue characterization of 3D printed elastomer material, in: Solid Freeform Fabrication Proceedings. Annual International Solid Freeform Fabrication Symposium, University of Texas, Austin.

  50. Moore JP, Christopher W (2015) Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyp J 21:675–685. https://doi.org/10.1108/RPJ-03-2014-0031

    Article  Google Scholar 

  51. Kumar K, Kumar GS (2015) An experimental and theoretical investigation of surface roughness of poly-jet printed parts. Virt Phys Prototyp 10:23–34. https://doi.org/10.1080/17452759.2014.999218

    Article  Google Scholar 

  52. Gay P, Blanco D, Pelayo F, Noriega A, Fernandez P (2015) Analysis of factors influencing the mechanical properties of flat polyjet manufactured parts. Proc Engg 132:70–77. https://doi.org/10.1016/j.proeng.2015.12.481

    Article  Google Scholar 

  53. Costa CA, Linzmaier PR, Pasquali FM (2013) Rapid prototyping material degradation: a study of mechanical properties. IFAC Proc 46:350–355. https://doi.org/10.3182/20130911-3-BR-3021.00118

    Article  Google Scholar 

  54. Mueller J, Kim S, Shea K, Daraio C (2015) Tensile properties of inkjet 3d printed parts: critical process parameters and their efficient analysis, in: Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2015, Boston, Massachusetts, USA.

  55. Wang Li, Yang Ju, Xie H, Ma G, Mao L, He K (2017) The mechanical and photoelastic properties of 3D printable stress visualized materials. Scient Rep 7:10918. https://doi.org/10.1038/S41598-017-1143

    Article  Google Scholar 

  56. Hong SY, Chan Kim Y, Wang M, Kim H-I, Byun D-Y, Nam J-D, Chou T-W, Ajayan PM, Ci L, Suhr J (2018) Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polym 145:88–94. https://doi.org/10.1016/j.polymer.2018.04.067

    Article  CAS  Google Scholar 

  57. Weiss KP, Bagrets N, Lange C, Goldacker W, Wohlgemuth J (2015) Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. IOP Conf Series: Mater Sci Engg 102:012022. https://doi.org/10.1088/1757-899X/102/1/012022

    Article  Google Scholar 

  58. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann 52:589–609. https://doi.org/10.1016/S0007-8506(07)60206-6

    Article  Google Scholar 

  59. Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Comput Des 28:307–318. https://doi.org/10.1016/0010-4485(95)00035-6

    Article  Google Scholar 

  60. Birkeland K, Katle A, Løvgreen S, Bøe OE, Wisth PJ (1999) Factors influencing the decision about orthodontic treatment. A longitudinal study among 11- and 15-year-olds and their parents. J Orofac Orthop 60:292–307. https://doi.org/10.1007/BF01301243

    Article  CAS  PubMed  Google Scholar 

  61. Hazeveld A, Huddleston Slater JJR, Ren Y (2014) Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am J Orthod Dentofacial Orthop 145:108–115. https://doi.org/10.1016/j.ajodo.2013.05.011

    Article  PubMed  Google Scholar 

  62. El-Katatny I, Masood SH, Morsi YS (2010) Error analysis of FDM fabricated medical replicas. Rapid Prototyp J 16:36–43. https://doi.org/10.1108/13552541011011695

    Article  Google Scholar 

  63. Lee KY, Cho JW, Chang NY, Chae JM, Kang KH, Kim SC (2015) Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J Orthod 45:217–225. https://doi.org/10.4041/kjod.2015.45.5.217

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bajaj D, Madhav I, Juneja M, Tuli R, Jindal P (2018) Methodology for stress measurement by transparent dental aligners using strain gauge. World J Dent. https://doi.org/10.5005/jp-journals-10015-1499

    Article  Google Scholar 

  65. Ahn HW, KimK A, Kim SH (2015) A new type of clear orthodontic retainer incorporating multi-layer hybrid materials. Korean J Orthod 45:268–272. https://doi.org/10.4041/kjod.2015.45.5.268

    Article  PubMed  PubMed Central  Google Scholar 

  66. Johal A, Sharma NR, McLaughlin K, Zou LF (2015) The reliability of thermoform retainers: A laboratory-based comparative study. Eur J Orthod 37:503507. https://doi.org/10.1093/ejo/cju075

    Article  Google Scholar 

  67. Lombardo L, Martines E, Mazzanti V, Arreghini A, Mollica F, Siciliani G (2017) Stress relaxation properties of four orthodontic aligner materials: a 24-hour in vitro study. Angle Orthod 87:11–18. https://doi.org/10.2319/113015-813.1

    Article  PubMed  Google Scholar 

  68. Kohda N, Iijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I (2013) Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod 83:476–483. https://doi.org/10.2319/052512-432.1

    Article  PubMed  Google Scholar 

  69. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P (2019) Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Amer J Orthod Dentof Orthop 156:694–701. https://doi.org/10.1016/j.ajodo.2019.05.012

    Article  Google Scholar 

  70. Singh S, Ramakrishna S (2017) Biomedical applications of additive manufacturing: Present and future. Current Opinion Biomed Eng 2:105–115. https://doi.org/10.1016/j.cobme.2017.05.006

    Article  Google Scholar 

  71. Podshivalov L, Gomes CM, Zocca A, Guenster J, Bar-Yoseph P, Fischer A (2013) Design, analysis and additive manufacturing of porous structures for biocompatible micro-scale scaffolds. Proced CIRP 5:247–252. https://doi.org/10.1016/j.procir.2013.01.049

    Article  Google Scholar 

  72. Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system. J Comput Des Eng 3:385–397. https://doi.org/10.1016/j.jcde.2016.06.006

    Article  Google Scholar 

  73. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Biomed Res Int 2015:1–21. https://doi.org/10.1016/j.jcde.2016.06.006

    Article  Google Scholar 

  74. Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, Rudolf von Rohr P, Müller R (2012) Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater 8:373–385. https://doi.org/10.1016/j.actbio.2011.08.027

    Article  CAS  PubMed  Google Scholar 

  75. Suwanprateeb J, Sanngam R, Panyathanmaporn T (2010) Influence of raw powder preparation routes on properties of hydroxyapatite fabricated by 3D printing technique. Mater Sci Eng C 30:610–617. https://doi.org/10.1016/j.msec.2010.02.014

    Article  CAS  Google Scholar 

  76. Leong K, Cheah C, Chua C (2003) Solid freeform fabrication of three dimensional scaffolds for engineering replacement tissues and organs. Biomater 24:2363–2378. https://doi.org/10.1016/S0142-9612(03)00030-9

    Article  CAS  Google Scholar 

  77. Gomez S, Vlad M, López J, Fernández E (2016) Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 42:341–350. https://doi.org/10.1016/j.actbio.2016.06.032

    Article  CAS  PubMed  Google Scholar 

  78. Bibb R, Thompson D, Winder J (2011) Computed tomography characterisation of additive manufacturing materials. Med Eng Phys 33:590–596. https://doi.org/10.1016/j.medengphy.2010.12.015

    Article  PubMed  Google Scholar 

  79. Brunelli M, Perrault C, Lacroix D (2017) Mechanical response of 3D insert® PCL to compression. J Mech Behav Biomed Mater 65:478–489. https://doi.org/10.1016/j.jmbbm.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  80. Amini M, Reisinger A, Pahr DH (2019) Influence of processing parameters on mechanical properties of a 3D-printed trabecular bone microstructure. J Biomed Mater Res Part B. 108:38–47. https://doi.org/10.1002/jbm.b.34363

    Article  CAS  Google Scholar 

  81. Egan PF, Bauer I, Shea K, Ferguson SJ (2019) Mechanics of three- dimensional printed lattices for biomedical devices. J Mech Des 141:031703. https://doi.org/10.1115/1.4042213

    Article  Google Scholar 

  82. Kent NJ, Jolivet L, O’Neill P, Brabazon D (2017) An evaluation of components manufactured from a range of materials, fabricated using PolyJet technology. Adv Mater Process Technol 3:318–329. https://doi.org/10.1080/2374068X.2017.1330856

    Article  Google Scholar 

  83. Martínez-García A, Sandoval-Pérez I, Ibáñez-García A, Peco K, Varela-Gandía FJ, Galvañ-Gisbert J (2019) Influence of process parameters of different additive manufacturing techniques on mechanical properties and safety of customised toys. Proc Manufac 41:106–113

    Article  Google Scholar 

  84. Radomir Mendricky (2016) Accuracy analysis of additive technique for parts manufacturing. Mm Sci J. 1502-1508. https://doi.org/10.17973/Mmsj.2016_11_2016169

  85. Phaneendra Mantada, Radomir Mendricky, Jiri Safka (2017) Parameters influencing the precision of various 3d printing technologies. Mm Sci J. 2004–2012 https://doi.org/10.17973/Mmsj.2017_12_201776

  86. Maurya Nagendra Kumar, Rastogi Vikas, Singh Pushpendra (2019) Comparative study and measurement of form errors for the component printed by FDM and polyjet process. Instrum Mesur Métrol. 18:353–358. https://doi.org/10.18280/i2m.180404

    Article  Google Scholar 

  87. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R (2018) FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test 69:157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  CAS  Google Scholar 

  88. Jain P, Kuthe AM (2013) Feasibility study of manufacturing using rapid prototyping: FDM approach. Proc Eng 63:4–11. https://doi.org/10.1016/j.proeng.2013.08.275

    Article  Google Scholar 

  89. Karapatis NP, Van Griethuysen JPS, Glardon R (1998) Direct rapid tooling: a review of current research. Rap Prototyp J 4:77–89. https://doi.org/10.1108/13552549810210248

    Article  Google Scholar 

  90. J Zhou D Herscovici C Calvin Che. 2000. Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts. Int J Mach Tools Manuf. 40 363 379. https://doi.org/10.1016/S0890-6955(99)00068-1

  91. Anitha R, Arunachalam S, Radhakrishnan P (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol 118:385–388. https://doi.org/10.1016/S0924-0136(01)00980-3

    Article  Google Scholar 

  92. Sood AK, Chaturvedi V, Datta S, Mahapatra SS (2011) Optimization of process parameter infused deposition modelling using weighted principle component analysis. J Adv Manuf Syst 2:241–250. https://doi.org/10.1142/S0219686711002181

    Article  Google Scholar 

  93. Ramesh M, Panneerselvam K (2020) Mechanical investigation and optimization of parameter selection for Nylon material processed by FDM. Mater Today: Proceed https://doi.org/10.1016/j.matpr.2020.02.697

  94. Motaparti K P, Taylor G, Leu M C, Chandrashekhara K, Castle J, Matlack M (2016) Effects of build parameters on compression properties for ULTEM 9085 parts by fused deposition modeling. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 964–977.

  95. Bagsik A, Schöppner V, Klemp E (2010) FDM part quality manufactured with Ultem 9085. In: Proceedings of the 14th International Scientific Conference on Polymeric Materials, Halle (Saale), Germany, 15: 307–315

  96. Bagsik A, Schöppner V (2011) Mechanical properties of fused deposition modeling parts manufactured with ultem 9085. In: Proceedings of the Society of Plastics Engineers ANTEC Conference (Anaheim), Boston, MA, USA. 1–5.

  97. Byberg KI, Gebisa AW, Lemu HG (2018) Mechanical properties of ULTEM 9085 material processed by fused deposition modelling. Polym Test 72:335–347. https://doi.org/10.1016/j.polymertesting.2018.10.040

    Article  CAS  Google Scholar 

  98. Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modelling in the 3D printing process. J Electron Mater 44:7717777. https://doi.org/10.1007/s11664-014-3425-6

    Article  CAS  Google Scholar 

  99. Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D printed PEEK and a comparative mechanical study between PEEK and ABS. Mater 8:5834–5846. https://doi.org/10.3390/ma8095271

    Article  CAS  Google Scholar 

  100. Srinivasan R, Pridhar T, Ramprasath LS, Sree Charan N, Ruban W (2020) Prediction of tensile strength in FDM printed ABS parts using response surface methodology. Mater Today: Proceed 27:1827–1832. https://doi.org/10.1016/j.matpr.2020.03.788

    Article  CAS  Google Scholar 

  101. Srinivasan R, Ruban W, Deepanraj A, Bhuvanesh R, Bhuvanesh T (2020) Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modeling. Mater Today: Proceed 27:1838–1842. https://doi.org/10.1016/j.matpr.2020.03.797

    Article  CAS  Google Scholar 

  102. Abid S, Messadi R, Hassine T (2019) Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design. Int J Adv Manuf Technol 100:1363–1372. https://doi.org/10.1007/s00170-018-2710-6

    Article  Google Scholar 

  103. Garg A, Bhattacharya A, Batish A (2016) Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength. Int J Adv Manuf Technol 89:2175–2191. https://doi.org/10.1007/s00170-016-9257-1

    Article  Google Scholar 

  104. Samykano M, Selvamani SK, Kadirgama K, Ngui WK, Kanagaraj G, Sudhakar K (2019) Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol 102:2779–2796. https://doi.org/10.1007/s00170-019-03313-0

    Article  Google Scholar 

  105. Raneya K, Lanib E, Kallac DK (2017) Experimental characterization of the tensile strength of ABS parts manufactured by fused deposition modeling process. Mater Today: Proceed 4:7956–7961. https://doi.org/10.1016/j.matpr.2017.07.132

    Article  CAS  Google Scholar 

  106. Wang S, Ma Y, Deng Z, Zhang S, Cai J (2020) Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym Test 86:106483. https://doi.org/10.1016/j.polymertesting.2020.106483

    Article  CAS  Google Scholar 

  107. Tanveer MQ, Haleem A, Suhaib M (2019) Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation. SN Appl Sci 1:1701. https://doi.org/10.1007/s42452-019-1744-1

    Article  Google Scholar 

  108. Afrose F, Masood SH, Nikzad M, Iovenitti P (2014) Effects of build orientations on tensile properties of PLA material processed by FDM. Adv Mater Res 1044:31

    Article  Google Scholar 

  109. Attoye S, Malekipour E, El-Mounayri H (2019) Correlation between process parameters and mechanical properties in parts printed by the fused deposition modeling process. In: Kramer S., Jordan J., Jin H., Carroll J., Beese A. (eds) Mechanics of Additive and Advanced Manufacturing, 8 https://doi.org/10.1007/978-3-319-95083-9_8

  110. U Khaleeq uz Zaman, Emilien Boesch, Ali Siadat, Mickael Rivette, Aamer Ahmed Baqai. 2018. Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. Int J Adv Manuf Technol. 101 1215 1226. https://doi.org/10.1007/s00170-018-3014-6

  111. Camargo JC, Machado AR, Almeida EC, Silva EFMS (2019) Mechanical properties of PLA-graphene filament for FDM 3D Printing. Int J Adv Manuf Technol 103:2423–2443. https://doi.org/10.1007/s00170-019-03532-5

    Article  Google Scholar 

  112. Garcia-Gonzalez D, Rusinek A, Jankowiak T, Arias A, Mechanical impact behavior of polyether–ether–ketone (PEEK). Compos Struct 124:88–99. https://doi.org/10.1016/j.compstruct.2014.12.061

  113. H Wu M Krifa Ko. 2018. Rubber (SEBS-g-MA) toughened flame retardant polyamide 6: microstructure, combustion, extension, and izod impact behaviour. Polym Plast Technol. 57 727 739. https://doi.org/10.1080/03602559.2017

  114. Peluso G, Petillo O, Ambrosio L, Nicolais L (1994) Polyetherimide as biomaterial: preliminary in vitro and in vivo biocompatibility testing. J Mater Sci Mater Med 5:738–742. https://doi.org/10.1007/BF00120367

    Article  CAS  Google Scholar 

  115. Jenkins MJ (2001) Crystallisation in miscible blends of PEEK and PEI. Polym 42:1981–1986. https://doi.org/10.1016/S0032-3861(00)00438-9

    Article  CAS  Google Scholar 

  116. Ding S, Zou B, Wang P, Ding H (2019) Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Test 78:105948. https://doi.org/10.1016/j.polymertesting.2019.105948

    Article  CAS  Google Scholar 

  117. Wang P, Zou B, Xiao H, Ding S, Huang C (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Tech 271:62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016

    Article  CAS  Google Scholar 

  118. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53. https://doi.org/10.1016/j.compstruct.2017.08.088

    Article  Google Scholar 

  119. Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manufac 22:176–186. https://doi.org/10.1016/j.addma.2018.04.039

    Article  CAS  Google Scholar 

  120. Verdejo E, de Toro J, Sobrino C, Martinez AM, Eguia VM (2019) Analysis of the influence of variables of the Fused Deposition Modeling (FDM) process on the mechanical properties of a carbon fiber-reinforced polyamide. Proced Manufac 41:731–738. https://doi.org/10.1016/j.promfg.2019.09.064

    Article  Google Scholar 

  121. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  CAS  Google Scholar 

  122. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV (2003) Nanofiber reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090. https://doi.org/10.1002/app.12496

    Article  CAS  Google Scholar 

  123. Leigh SJ, Bradley RJ, Purssell CP, Billson D, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7:1–7. https://doi.org/10.1371/journal.pone.0049365

    Article  CAS  Google Scholar 

  124. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  CAS  Google Scholar 

  125. Gnanasekarana K, Heijmansa T, van Bennekomb S, Woldhuisb H, Wijniab S (2017) 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28. https://doi.org/10.1016/j.apmt.2017.04.003

    Article  Google Scholar 

  126. Kursad Sezer H, Eren O (2019) FDM 3D printing of MWCNT reinforced ABS nano-composite parts with enhanced mechanical and electrical properties. J Manufac Process 37:339–347. https://doi.org/10.1016/j.jmapro.2018.12.004

    Article  Google Scholar 

  127. Berretta S, Davies R, Shyng YT, Wang Y, Ghita O (2017) Fused deposition modelling of high temperature polymers: exploring CNT PEEK composites. Polym Test 63:251–262. https://doi.org/10.1016/j.polymertesting.2017.08.024

    Article  CAS  Google Scholar 

  128. McLauchlin AR, Ghita OR, Savage L (2014) Studies on the reprocessability of poly(ether ether ketone) (PEEK). J Mater Process Tech 214:75–80. https://doi.org/10.1016/j.jmatprotec.2013.07.010

    Article  CAS  Google Scholar 

  129. Tseng JW, Liu CY, Yen YK, Belkner J, Bremicker T, Liu BH (2018) Screw extrusion based additive manufacturing of PEEK. Mater Des 140:209–221. https://doi.org/10.1016/j.matdes.2017.11.032

    Article  CAS  Google Scholar 

  130. Arif MF, Kumar S, Varadarajan KM, Cantwell WJ (2018) Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater Des 146:249–259. https://doi.org/10.1016/j.matdes.2018.03.015

    Article  CAS  Google Scholar 

  131. Rinaldi M, Ghidini T, Cecchini F, Brandao A, Nanni F (2018) Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos Part B-Eng 145:162–172. https://doi.org/10.1016/j.compositesb.2018.03.029

    Article  CAS  Google Scholar 

  132. Geng P, Zhao J, Wu WZ, Ye WL, Wang YL, Wang SB (2019) Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J Manuf Process 37:266–273. https://doi.org/10.1016/j.jmapro.2018.11.023

    Article  Google Scholar 

  133. Yang C, Tian X, Li D, Cao Y, Zhao F, Shi C (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Tech 248:1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027

    Article  CAS  Google Scholar 

  134. Chien MC, Weiss RA (1988) Strain-induced crystallization behavior of poly(Ether ether ketone) (PEEK). Polym Eng Sci 28:6–12. https://doi.org/10.1002/pen.760280103

    Article  CAS  Google Scholar 

  135. Nazari B, Rhoades AM, Schaake RP, Colby RH (2016) Flow-induced crystallization of PEEK: isothermal crystallization kinetics and lifetime of flow-induced precursors during isothermal annealing. ACS Macro Lett 5:849–853. https://doi.org/10.1021/acsmacrolett.6b00326

    Article  CAS  PubMed  Google Scholar 

  136. Pascual A, Toma M, Tsotra P, Grob MC (2019) On the stability of PEEK for short processing cycles at high temperatures and oxygen-containing atmosphere. Polym Degrad Stab 165:161–169. https://doi.org/10.1016/j.polymdegradstab.2019.04.025

    Article  CAS  Google Scholar 

  137. Jin L, Ball J, Bremner T, Sue HJ (2014) Crystallization behavior and morphological characterization of poly(ether ether ketone). Polym 55:5255–5265. https://doi.org/10.1016/j.polymer.2014.08.045

    Article  CAS  Google Scholar 

  138. Rae PJ, Brown EN, Orler EB (2007) The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polym 48:598–615. https://doi.org/10.1016/j.polymer.2006.11.032

    Article  CAS  Google Scholar 

  139. El Halabi F, Rodriguez JF, Rebolledo L, Hurtos E, Doblare M (2011) Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants. J Mech Behav Biomed Mater 4:1819–1832. https://doi.org/10.1016/j.jmbbm.2011.05.039

    Article  CAS  PubMed  Google Scholar 

  140. Zhao Y, Zhao K, Li Y, Chen F (2020) Mechanical characterization of biocompatible PEEK by FDM. J Manufac Process 56:28–42. https://doi.org/10.1016/j.jmapro.2020.04.063

    Article  Google Scholar 

  141. Wonjin Jo, O-Chang Kwon, Myoung-Woon Moon, 2018 Investigation of influence of heat treatment on mechanical strength of FDM Printed 3d Objects. Rapid Prototyp J. 24 637 644. https://doi.org/10.1108/rpj-06-2017-0131

  142. Guduru S (2020) Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3d printing. Mater Today: Proceed 33:5403–5407. https://doi.org/10.1016/j.matpr.2020.03.128

    Article  CAS  Google Scholar 

  143. Szykiedans K, Credo W (2016) Mechanical properties of FDM and SLA low-cost 3-D prints. Procedia Eng 136:257–262. https://doi.org/10.1016/j.proeng.2016.01.207

    Article  CAS  Google Scholar 

  144. Khabia S, Jain KK (2020) Comparison of mechanical properties of components 3D printed from different brand ABS filament on different FDM printers. Mater Today: Proceed 26:2907–2914. https://doi.org/10.1016/j.matpr.2020.02.600

    Article  CAS  Google Scholar 

  145. Khabia S, Jain KK (2020) Influence of change in layer thickness on mechanical properties of components 3d printed on Zortrax M 200 FDM printer with Z-ABS filament material & Accucraft i250+ FDM printer with low cost ABS filament material. Mater Today: Proceed 26:1315–1322. https://doi.org/10.1016/j.matpr.2020.02.268

    Article  CAS  Google Scholar 

  146. Kumar S, Kruth JP (2010) Composites by rapid prototyping technology. Mater Des 31:850–856. https://doi.org/10.1016/j.matdes.2009.07.045

    Article  CAS  Google Scholar 

  147. Horii T, Kirihara S, Miyamoto Y (2009) Freeform fabrication of superalloy objects by 3D micro welding. Mater Des 30:1093–1097. https://doi.org/10.1016/j.matdes.2008.06.033

    Article  CAS  Google Scholar 

  148. Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C (2011) RepRap – the replicating rapid prototyper. Robot 29:177–191. https://doi.org/10.1017/S026357471000069X

    Article  Google Scholar 

  149. Pearce JM (2012) Building research equipment with free, Open-Source Hardware. Sci 337:1303–1304. https://doi.org/10.1126/science.1228183

    Article  CAS  Google Scholar 

  150. Pearce JM, Morris Blair C, Laciak KJ, Andrews R, Nosrat A, Zelenika-Zovko I (2010) 3-D Printing of open source appropriate technologies for self-directed sustainable development. J Sustain Dev 3:17–29. https://doi.org/10.5539/jsd.v3n4p17

    Article  Google Scholar 

  151. K Tymrak Pearce. 2014. Mechanical properties of components fabricated with open-source 3-d printers under realistic environmental conditions Mater Des. 58 242 246. https://doi.org/10.1016/j.matdes.2014.02.038

Download references

Acknowledgements

The authors are grateful to Dr Rajesh Ranganathan, Professor, Coimbatore Institute of Technology for his knowledge sharing in polymer AM for drafting this article.

Author information

Authors and Affiliations

Authors

Contributions

PC was involved in review of polyjet printed parts.

RR helped in review of polyjet printed parts FDM.

PD was involved in critical review of polyjet and FDM printed parts.

Corresponding author

Correspondence to Chandramohan Palanisamy.

Ethics declarations

Consent to Publisher

Authors have obtained permission for usage of Figs. 1 to 5and7 to 22 from the respective copyright owner/publisher. Figure 6 is taken from the article which is open access; hence, content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Therefore, the reference of this work has been properly cited in this review work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, C., Raman, R. & Dhanraj, P.k. Additive manufacturing: a review on mechanical properties of polyjet and FDM printed parts. Polym. Bull. 79, 7065–7116 (2022). https://doi.org/10.1007/s00289-021-03899-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03899-0

Keywords

Navigation