Skip to main content
Log in

Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study intended to develop improved biopolymer film from seaweed polysaccharides. The quantity optimization of polysaccharides for the composite film was sought by empirical response surface methodology. To achieve the goal, Box–Behnken model was applied to the concentration of three independent variables, viz. agar (1.0–2.0% w/v), alginate (1.0–2.0% w/v) and carrageenan (1.0–2.0% (w/v). The glycerol was used as a plasticizer and kept constant (25% w/w) for total solid mass. The overall desirability function fits with the quadratic model at 99.78% level of significance for the optimization of agar (1.99% w/v), alginate (1.45 w/v) and carrageenan (2.0% w/v) to reach minimum water vapor permeability and maximum tensile strength, elongation at break and puncture resistance. The absolute residual error (1.04–3.37%) of experimental and predicted response was also validated. Attenuated total reflection-Fourier transform infrared spectroscopy confirmed the interactions such as stretching at 2900 cm−1 region corresponded to C–H stretching vibration and an intensity peak observed at 1200 cm−1 of AAC film corresponded to sulfate ester groups. The shift in crystalline nature of composite film was confirmed by XRD. The 3D image of atomic force microscopy showed layer-by-layer assembly of intermolecules at 310-nm resolution, and the characterized smooth surface has more functional application. The carrageenan and agar are found to be more responsible for the film properties such as moisture content, thickness, whiteness index, transparency, swelling and erosion than alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Global Plastic Production 1950–2018 (2018) Statista. (n.d.). https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

  2. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1):1–11. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  3. Pradhan G, Sharma YC (2020) Studies on green synthesis of glycerol carbonate from waste cooking oil derived glycerol over an economically viable NiMgOx heterogeneous solid base catalyst. J Clean Prod 264:121258. https://doi.org/10.1016/j.jclepro.2020.120536

    Article  CAS  Google Scholar 

  4. Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C (2020) Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25(1):135. https://doi.org/10.3390/molecules25010135

    Article  CAS  Google Scholar 

  5. López OV, Zaritzky NE, García MA (2010) Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. J Food Eng 100(1):160–168. https://doi.org/10.1016/j.jfoodeng.2010.03.041

    Article  CAS  Google Scholar 

  6. Woggum T, Sirivongpaisal P, Wittaya T (2014) Properties and characteristics of dual-modified rice starch based biodegradable films. Int J Biol Macromol 67:490–502. https://doi.org/10.1016/j.ijbiomac.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  7. Do Lago RC, de Oliveira ALM, Dias MC, de Carvalho EEN, Tonoli GHD, Boas EVDBV (2020) Obtaining cellulosic nanofibrils from oat straw for biocomposite reinforcement: mechanical and barrier properties. Ind Crops Prod 148:112264. https://doi.org/10.1016/j.indcrop.2020.112264

    Article  CAS  Google Scholar 

  8. Li S, Ma Y, Ji T, Sameen DE, Ahmed S, Qin W, Liu Y (2020) Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr Polym 248:116805. https://doi.org/10.1016/j.carbpol.2020.116805

    Article  CAS  PubMed  Google Scholar 

  9. Mali S, Grossmann MVE, Garcia MA, Martino MN, Zaritzky NE (2002) Microstructural characterization of yam starch films. Carbohydr Polym 50(4):379–386. https://doi.org/10.1016/S0144-8617(02)00058-9

    Article  CAS  Google Scholar 

  10. da Rosa ZE, Pinto VZ, Klein B, El Halal SLM, Elias MC, Prentice-Hernández C, Dias ARG (2012) Development of oxidised and heat–moisture treated potato starch film. Food Chem 132(1):344–350. https://doi.org/10.1016/j.foodchem.2011.10.090

    Article  CAS  Google Scholar 

  11. Zareie Z, Yazdi FT, Mortazavi SA (2020) Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydr Polym 244:116491. https://doi.org/10.1016/j.carbpol.2020.116491

    Article  CAS  PubMed  Google Scholar 

  12. Doh H, Dunno KD, Whiteside WS (2020) Cellulose nanocrystal effects on the biodegradability with alginate and crude seaweed extract nanocomposite films. Food Biosci 38:100795. https://doi.org/10.1016/j.fbio.2020.100795

    Article  CAS  Google Scholar 

  13. Mohamed SA, El-Sakhawy M, El-Sakhawy MAM (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohydr Polym 238:116178. https://doi.org/10.1016/j.carbpol.2020.116178

    Article  CAS  PubMed  Google Scholar 

  14. Park J, Nam J, Yun H, Jin HJ, Kwak HW (2021) Aquatic polymer-based edible films of fish gelatin crosslinked with alginate dialdehyde having enhanced physicochemical properties. Carbohydr Polym 254:117317. https://doi.org/10.1016/j.carbpol.2020.117317

    Article  CAS  PubMed  Google Scholar 

  15. Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19–27. https://doi.org/10.1016/j.carbpol.2018.03.088

    Article  CAS  PubMed  Google Scholar 

  16. Venugopal V (2019) Sulfated and non-sulfated polysaccharides from seaweeds and their uses: an overview. ECronicon Nutr 14:126–141

    Google Scholar 

  17. Rioux LE, Turgeon SL, Beaulieu M (2007) Rheological characterisation of polysaccharides extracted from brown seaweeds. J Sci Food Agric 87(9):1630–1638. https://doi.org/10.1002/jsfa.2829

    Article  CAS  Google Scholar 

  18. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  19. Chopin N, Guillory X, Weiss P, Bideau JL, Colliec-Jouault S (2014) Design polysaccharides of marine origin: chemical modifications to reach advanced versatile compounds. Curr Org Chem 18(7):867–895. https://doi.org/10.2174/138527281807140515152334

    Article  CAS  Google Scholar 

  20. Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Edible films and coatings: tomorrow’s packagings: a review. Crit Rev Food Sci 38(4):299–313. https://doi.org/10.1080/10408699891274219

    Article  CAS  Google Scholar 

  21. Martínez-Sanz M, Gómez-Mascaraque LG, Ballester AR, Martínez-Abad A, Brodkorb A, López-Rubio A (2019) Production of unpurified agar-based extracts from red seaweed Gelidium sesquipedale by means of simplified extraction protocols. Algal Res 38:101420. https://doi.org/10.1016/j.algal.2019.101420

    Article  Google Scholar 

  22. Armisén R, Gaiatas F (2009) 4—Agar. In: Phillips GO, Williams PA (eds) Woodhead Publishing series in food science, technology and nutrition, handbook of hydrocolloids, 2nd edn. Woodhead Publishing, Sawston, pp 82–107. https://doi.org/10.1533/9781845695873.82

    Chapter  Google Scholar 

  23. Laaman TR (ed) (2011) Hydrocolloids in food processing. Wiley-Blackwell, Oxford

    Google Scholar 

  24. Nieto MB, Akins M (2010) Hydrocolloids in bakery fillings. Hydrocoll Food Process 43:67

    Google Scholar 

  25. Mostafavi FS, Zaeim D (2020) Agar-based edible films for food packaging applications—a review. Int J Biol Macromol 159:1165–1176. https://doi.org/10.1016/j.ijbiomac.2020.05.123

    Article  CAS  PubMed  Google Scholar 

  26. Venugopal V (2016) Marine polysaccharides: food applications. Polysaccharides from seaweed and microalgae. Marine polysaccharides: food applications, vol 2011. CRC Press, Boca Raton, pp 111–122

    Google Scholar 

  27. Arvizu-Higuera DL, Rodríguez-Montesinos YE, Murillo-Álvarez JI, Muñoz-Ochoa M, Hernández-Carmona G (2007) Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. Nineteenth international seaweed symposium. Springer, Dordrecht, pp 65–69

    Google Scholar 

  28. Rhim JW (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci Technol 37(3):323–330. https://doi.org/10.1016/j.lwt.2003.09.008

    Article  CAS  Google Scholar 

  29. Sandhu KS, Sharma L, Kaur M, Kaur R (2020) Physical, structural and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: process optimization using response surface methodology. Int J Biol Macromol 143:704–713. https://doi.org/10.1016/j.ijbiomac.2019.09.111

    Article  CAS  PubMed  Google Scholar 

  30. Gao X, Zhang Y, Zhao Y (2017) Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate. Carbohydr Polym 159:108–115. https://doi.org/10.1016/j.carbpol.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Vincent T, Faur C, Guibal E (2018) A comparison of palladium sorption using polyethylenimine impregnated alginate-based and carrageenan-based algal beads. Appl Sci 8(2):264. https://doi.org/10.3390/app8020264

    Article  CAS  Google Scholar 

  32. Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromol 2(4):1089–1096. https://doi.org/10.1021/bm010008g

    Article  CAS  Google Scholar 

  33. Ertesvåg H, Valla S (1998) Biosynthesis and applications of alginates. Polym Degrad Stab 59(1–3):85–91. https://doi.org/10.1016/S0141-3910(97)00179-1

    Article  Google Scholar 

  34. Vijayakumar S, Saravanakumar K, Malaikozhundan B, Divya M, Vaseeharan B, Durán-Lara EF, Wang MH (2020) Biopolymer K-carrageenan wrapped ZnO nanoparticles as drug delivery vehicles for anti MRSA therapy. Int J Biol Macromol 144:9–18. https://doi.org/10.1016/j.ijbiomac.2019.12.030

    Article  CAS  PubMed  Google Scholar 

  35. Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, Zuber M (2017) A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 96:282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

    Article  CAS  PubMed  Google Scholar 

  36. Oun AA, Rhim JW (2017) Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 67:45–53. https://doi.org/10.1016/j.foodhyd.2016.12.040

    Article  CAS  Google Scholar 

  37. Alves VD, Castelló R, Ferreira AR, Costa N, Fonseca IM, Coelhoso IM (2011) Barrier properties of carrageenan/pectin biodegradable composite films. Proc Food Sci 1:240–245. https://doi.org/10.1016/j.profoo.2011.09.038

    Article  CAS  Google Scholar 

  38. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM, Khaksar R (2014) Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym 101:582–591. https://doi.org/10.1016/j.carbpol.2013.09.070

    Article  CAS  PubMed  Google Scholar 

  39. Volery P, Besson R, Schaffer-Lequart C (2004) Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J Agric Food Chem 52(25):7457–7463. https://doi.org/10.1021/jf040229o

    Article  CAS  PubMed  Google Scholar 

  40. Lee MS, Lee SH, Ma YH, Park SK, Bae DH, Ha SD, Song KB (2005) Effect of plasticizer and cross-linking agent on the physical properties of protein films. Prev Nutr Food Sci 10(1):88–91. https://doi.org/10.3746/jfn.2005.10.1.088

    Article  CAS  Google Scholar 

  41. Han JH, Aristippos G (2005) 15—Edible films and coatings: a review. In: Han JH (ed) Innovations in food packaging. Academic Press, London, pp 239–262. https://doi.org/10.1016/B978-012311632-1/50047-4

    Chapter  Google Scholar 

  42. Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–1347. https://doi.org/10.1016/j.carbpol.2012.09.069

    Article  CAS  PubMed  Google Scholar 

  43. Munoz LA, Aguilera JM, Rodriguez-Turienzo L, Cobos A, Diaz O (2012) Characterization and microstructure of films made from mucilage of salvia hispanica and whey protein concentrate. J Food Eng 111(3):511–518. https://doi.org/10.1016/j.jfoodeng.2012.02.031

    Article  CAS  Google Scholar 

  44. Nouraddini M, Esmaiili M, Mohtarami F (2018) Development and characterization of edible films based on eggplant flour and corn starch. Int J Biol Macromol 120:1639–1645. https://doi.org/10.1016/j.ijbiomac.2018.09.126

    Article  CAS  PubMed  Google Scholar 

  45. Ganesan AR, Shanmugam M, Bhat R (2018) Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. Int J Biol Macromol 112:1164–1170. https://doi.org/10.1016/j.ijbiomac.2018.02.089

    Article  CAS  Google Scholar 

  46. Thakur R, Saberi B, Pristijono P, Golding J, Stathopoulos C, Scarlett C, Vuong Q (2016) Characterization of rice starch-ι-carrageenan biodegradable edible film. Effect of stearic acid on the film properties. Int J Biol Macromol 93:952–960. https://doi.org/10.1016/j.ijbiomac.2016.09.053

    Article  CAS  PubMed  Google Scholar 

  47. Nouri L, Nafchi AM (2014) Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. Int J Biol Macromol 66:254–259. https://doi.org/10.1016/j.ijbiomac.2014.02.044

    Article  CAS  PubMed  Google Scholar 

  48. Jasenská D, Kašpárková V, Radaszkiewicz KA, Capáková Z, Pacherník J, Trchová M, Humpolíček P (2021) Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr Polym 253:117244. https://doi.org/10.1016/j.carbpol.2020.117244

    Article  CAS  PubMed  Google Scholar 

  49. Ba H, Sutter C, Papaefthimiou V, Zafeiratos S, Bahouka A, LafuePham-Huu YC (2020) Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon 167:169–180. https://doi.org/10.1016/j.carbon.2020.05.012

    Article  CAS  Google Scholar 

  50. Said NS, Sarbon NM (2020) Response surface methodology (RSM) of chicken skin gelatin based composite films with rice starch and curcumin incorporation. Polym Test 81:106161. https://doi.org/10.1016/j.polymertesting.2019.106161

    Article  CAS  Google Scholar 

  51. Singh TP, Chatli MK, Sahoo J (2015) Development of chitosan based edible films: process optimization using response surface methodology. J Food Sci Technol 52(5):2530–2543. https://doi.org/10.1007/s13197-014-1318-6

    Article  CAS  PubMed  Google Scholar 

  52. Thakur R, Saberi B, Pristijono P, Stathopoulos CE, Golding JB, Scarlett CJ, Vuong QV (2017) Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. J Food Sci Technol 54(8):2270–2278. https://doi.org/10.1007/s13197-017-2664-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Blanco-Pascual N, Montero MP, Gómez-Guillén MC (2014) Antioxidant film development from unrefined extracts of brown seaweeds Laminaria digitata and Ascophyllum nodosum. Food Hydrocoll 37:100–110. https://doi.org/10.1016/j.foodhyd.2013.10.021

    Article  CAS  Google Scholar 

  54. Bajić M, Jalšovec H, Travan A, Novak U, Likozar B (2019) Chitosan-based films with incorporated supercritical CO2 hop extract: structural, physicochemical, and antibacterial properties. Carbohydr Polym 219:261–268. https://doi.org/10.1016/j.carbpol.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  55. Doh H, Dunno KD, Whiteside WS (2020) Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocoll 105:105744. https://doi.org/10.1016/j.foodhyd.2020.105744

    Article  Google Scholar 

  56. Farhan A, Hani NM (2020) Active edible films based on semi-refined κ-carrageenan: antioxidant and color properties and application in chicken breast packaging. Food Packag Shelf Life 24:100476. https://doi.org/10.1016/j.fpsl.2020.100476

    Article  Google Scholar 

  57. Han JH, Floros JD (1997) Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. J Plast Film Sheeting 13(4):287–298. https://doi.org/10.1177/875608799701300405

    Article  CAS  Google Scholar 

  58. Meher JG, Tarai M, Yadav NP, Patnaik A, Mishra P, Yadav KS (2013) Development and characterization of cellulose–polymethacrylate mucoadhesive film for buccal delivery of carvedilol. Carbohydr Polym 96(1):172–180. https://doi.org/10.1016/j.carbpol.2013.03.076

    Article  CAS  PubMed  Google Scholar 

  59. ASTM (2016) Standard test method for water vapor transmission of materials. Standard designations E96/E96M, Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  60. ASTM (1995) Standard test method for tensile properties of thin plastic sheeting. American Society for Testing and Materials. Subcommittee D20. 10 on Mechanical Properties

  61. Iwata K, Ishizaki S, Handa A, Tanaka M (2000) Preparation and characterization of edible films from fish water-soluble proteins. Fish Sci 66(2):372–378. https://doi.org/10.1046/j.1444-2906.2000.00057.x

    Article  CAS  Google Scholar 

  62. Ahmad M, Benjakul S (2011) Characteristics of gelatin from the skin of unicorn leatherjacket (Aluterus monoceros) as influenced by acid pretreatment and extraction time. Food Hydrocoll 25(3):381–388. https://doi.org/10.1016/j.foodhyd.2010.07.004

    Article  CAS  Google Scholar 

  63. Deepthi PR, Dhivyalakshmi R, VijayakumaranNair K, Shanthi J (2017) Investigation on the growth and characterization of pure and oregano extract doped kip single crystals. Int J Res Appl Sci Eng Technol 5(11):907–915

    Article  Google Scholar 

  64. Van der Meeren L, Verduijn J, Krysko DV, Skirtach AG (2020) AFM analysis enables differentiation between Apoptosis, Necroptosis, and Ferroptosis in murine cancer cells. Iscience 23(12):101816. https://doi.org/10.1016/j.isci.2020.101816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aguirre-Loredo RY, Rodríguez-Hernández AI, Morales-Sánchez E, Gómez-Aldapa CA, Velazquez G (2016) Effect of equilibrium moisture content on barrier, mechanical and thermal properties of chitosan films. Food Chem 196:560–566. https://doi.org/10.1016/j.foodchem.2015.09.065

    Article  CAS  PubMed  Google Scholar 

  66. Rangel-Marrón M, Montalvo-Paquini C, Palou E, López-Malo A (2013) Optimization of the moisture content, thickness, water solubility and water vapor permeability of sodium alginate edible films. In: Recent advances in chemical engineering, biochemistry and computational chemistry. Paris, Perancis, pp 29–31

  67. Bajić M, Oberlintner A, Kõrge K, Likozar B, Novak U (2020) Formulation of active food packaging by design: linking composition of the film-forming solution to properties of the chitosan-based film by response surface methodology (RSM) modelling. Int J Biol Macromol 160:971–978. https://doi.org/10.1016/j.ijbiomac.2020.05.186

    Article  CAS  PubMed  Google Scholar 

  68. Ahmadi R, Kalbasi-Ashtari A, Oromiehie A, Yarmand MS, Jahandideh F (2012) Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J Food Eng 109(4):745–751. https://doi.org/10.1016/j.jfoodeng.2011.11.010

    Article  CAS  Google Scholar 

  69. Ma X, Qiao C, Wang X, Yao J, Xu J (2019) Structural characterization and properties of polyols plasticized chitosan films. Int J Biol Macromol 135:240–245. https://doi.org/10.1016/j.ijbiomac.2019.05.158

    Article  CAS  PubMed  Google Scholar 

  70. Nordin N, Othman SH, Rashid SA, Basha RK (2020) Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocoll 106:105884. https://doi.org/10.1016/j.foodhyd.2020.105884

    Article  CAS  Google Scholar 

  71. Galus S, Lenart A (2013) Development and characterization of composite edible films based on sodium alginate and pectin. J Food Eng 115(4):459–465. https://doi.org/10.1016/j.jfoodeng.2012.03.006

    Article  CAS  Google Scholar 

  72. García MA, Pinotti A, Martino MN, Zaritzky NE (2009) Characterization of starch and composite edible films and coatings. Edible films and coatings for food applications. Springer, New York, pp 169–209. https://doi.org/10.1007/978-0-387-92824-1_6

    Chapter  Google Scholar 

  73. Sudaryati HP, Mulyani T, Hansyah ER (2012) Physical and mechanical properties of edible film from porang (Amorphopallus oncophyllus) flour and carboxymethylcellulose. J Teknol Pertan 11(3):196–201

    Google Scholar 

  74. Rusli A, Mulyati MT, Metusalach M, Salengke S (2016) Physical and mechanical properties of agar based edible film with glycerol plasticizer. Int Food Res J 23(4):1669–1675. https://doi.org/10.31227/osf.io/tq2pf

    Article  Google Scholar 

  75. Mahcene Z, Khelil A, Hasni S, Akman PK, Bozkurt F, Birech K, Tornuk F (2020) Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int J Biol Macromol 145:124–132. https://doi.org/10.1016/j.ijbiomac.2019.12.093

    Article  CAS  PubMed  Google Scholar 

  76. Nagarajan M, Benjakul S, Prodpran T, Songtipya P (2015) Properties and characteristics of nanocomposite films from tilapia skin gelatin incorporated with ethanolic extract from coconut husk. J Food Sci Technol 52(12):7669–7682. https://doi.org/10.1007/s13197-015-1905-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen CH, Kuo WS, Lai LS (2010) Water barrier and physical properties of starch/decolorized hsian-tsao leaf gum films: impact of surfactant lamination. Food Hydrocoll 24(2–3):200–207. https://doi.org/10.1016/j.foodhyd.2009.09.006

    Article  CAS  Google Scholar 

  78. Sukhija S, Singh S, Riar CS (2016) Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocoll 60:128–137. https://doi.org/10.1016/j.foodhyd.2016.03.023

    Article  CAS  Google Scholar 

  79. Liu D, Zhang L (2006) Structure and properties of soy protein plastics plasticized with acetamide. Macromol Mater Eng 291(7):820–828. https://doi.org/10.1002/mame.200600098

    Article  CAS  Google Scholar 

  80. Saarai A, Sedlacek T, Kasparkova V, Kitano T, Saha P (2012) On the characterization of sodium alginate/gelatine-based hydrogels for wound dressing. J Appl Polym Sci 126(S1):E79–E88. https://doi.org/10.1002/app.36590

    Article  CAS  Google Scholar 

  81. Soe MT, Chitropas P, Pongjanyakul T, Limpongsa E, Jaipakdee N (2020) Thai glutinous rice starch modified by ball milling and its application as a mucoadhesive polymer. Carbohydr Polym 232:115812. https://doi.org/10.1016/j.carbpol.2019.115812

    Article  CAS  PubMed  Google Scholar 

  82. Nafee NA, Ismail FA, Boraie NA, Mortada LM (2004) Mucoadhesive delivery systems. I. Evaluation of mucoadhesive polymers for buccal tablet formulation. Drug Dev Ind Pharm 30(9):985–993. https://doi.org/10.1081/DDC-200037245

    Article  CAS  PubMed  Google Scholar 

  83. Shaikh M, Haider S, Ali TM, Hasnain A (2019) Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. Int J Biol Macromol 124:209–219. https://doi.org/10.1016/j.ijbiomac.2018.11.135

    Article  CAS  PubMed  Google Scholar 

  84. Bastarrachea L, Dhawan S, Sablani SS (2011) Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3(2):79–93. https://doi.org/10.1007/s12393-011-9034-8

    Article  Google Scholar 

  85. de Lima BC, Crepaldi MI, de Oliveira SO, de Oliveira AC, Martins AF, Garcia PS, Bonafé EG (2020) Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. Int J Biol Macromol 165:582–590. https://doi.org/10.1016/j.ijbiomac.2020.09.150

    Article  CAS  Google Scholar 

  86. Roy S, Rhim JW (2019) Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocoll 90:500–507. https://doi.org/10.1016/j.foodhyd.2018.12.056

    Article  CAS  Google Scholar 

  87. Kowalczyk D, Baraniak B (2014) Effect of candelilla wax on functional properties of biopolymer emulsion films—a comparative study. Food Hydrocoll 41:195–209. https://doi.org/10.1016/j.foodhyd.2014.04.004

    Article  CAS  Google Scholar 

  88. Saedi S, Shokri M, Rhim JW (2020) Preparation of carrageenan-based nanocomposite films incorporated with functionalized halloysite using AgNP and sodium dodecyl sulfate. Food Hydrocoll 106:105934. https://doi.org/10.1016/j.foodhyd.2020.105934

    Article  CAS  Google Scholar 

  89. Sani IK, Pirsa S, Tağı Ş (2019) Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym Test 79:106004. https://doi.org/10.1016/j.polymertesting.2019.106004

    Article  CAS  Google Scholar 

  90. Srinivasa PC, Ravi R, Tharanathan RN (2007) Effect of storage conditions on the tensile properties of eco-friendly chitosan films by response surface methodology. J Food Eng 80(1):184–189. https://doi.org/10.1016/j.jfoodeng.2006.05.007

    Article  CAS  Google Scholar 

  91. Mir SA, Dar BN, Wani AA, Shah MA (2018) Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci Technol 80:141–154. https://doi.org/10.1016/j.tifs.2018.08.004

    Article  CAS  Google Scholar 

  92. Luzi F, Torre L, Kenny JM, Puglia D (2019) Bio-and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Materials 12(3):471. https://doi.org/10.3390/ma12030471

    Article  CAS  PubMed Central  Google Scholar 

  93. Jiang Y, Lan W, Sameen DE, Ahmed S, Qin W, Zhang Q, Liu Y (2020) Preparation and characterization of grass carp collagen–chitosan–lemon essential oil composite films for application as food packaging. Int J Biol Macromol 160:340–351. https://doi.org/10.1016/j.ijbiomac.2020.05.202

    Article  CAS  PubMed  Google Scholar 

  94. Tako M, Higa M, Medoruma K, Nakasone Y (1999) A highly methylated agar from red seaweed, Gracilaria arcuata. Bot Mar 42:513–517. https://doi.org/10.1515/BOT.1999.058

    Article  CAS  Google Scholar 

  95. Elhefian EA, Nasef MM, Yahaya AH (2012) Preparation and characterization of chitosan/agar blended films: part 2. Thermal, mechanical, and surface properties. E-J Chem 9(2):510–516. https://doi.org/10.1155/2012/781206

    Article  CAS  Google Scholar 

  96. Sekkal M, Legrand P (1993) A spectroscopic investigation of the carrageenans and agar in the 1500–100 cm1 spectral range. Spectrochim Acta Part A 49(2):209–221. https://doi.org/10.1016/0584-8539(93)80176-B

    Article  Google Scholar 

  97. Mathlouthi N, Lallès JP, Lepercq P, Juste C, Larbier M (2002) Xylanase and β-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J Anim Sci 80(11):2773–2779. https://doi.org/10.2527/2002.80112773x

    Article  CAS  PubMed  Google Scholar 

  98. Sonawane RO, Patil SD (2018) Fabrication and statistical optimization of starch-κ-carrageenan cross-linked hydrogel composite for extended release pellets of zaltoprofen. Int J Biol Macromol 120:2324–2334. https://doi.org/10.1016/j.ijbiomac.2018.08.177

    Article  CAS  PubMed  Google Scholar 

  99. Wu J, Zhong F, Li Y, Shoemaker CF, Xia W (2013) Preparation and characterization of pullulan–chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocoll 30(1):82–91. https://doi.org/10.1016/j.foodhyd.2012.04.002

    Article  CAS  Google Scholar 

  100. Ramos ÓL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Malcata FX (2013) Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll 30(1):110–122. https://doi.org/10.1016/j.foodhyd.2012.05.001

    Article  CAS  Google Scholar 

  101. Guan Y, Liu X, Zhang Y, Yao K (1998) Study of phase behavior on chitosan/viscose rayon blend film. J Appl Polym Sci 67(12):1965–1972. https://doi.org/10.1002/(SICI)1097-4628(19980321)67:12%3c1965::AID-APP2%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  102. Liu L, Cai R, Wang Y, Tao G, Ai L, Wang P, Yang M, Zuo H, Zhao P, He H (2018) Polydopamine-assisted silver nanoparticle self-assembly on sericin/agar film for potential wound dressing application. Int J Mol Sci 19:2875. https://doi.org/10.3390/ijms19102875

    Article  CAS  PubMed Central  Google Scholar 

  103. Helmiyati H, Aprilliza M (2017) Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. In: International conference on recent trends in physics 2016 (ICRTP201, IOP conference series: materials science and engineering), vol 188, pp 12–19. https://doi.org/10.1088/1757-899X/188/1/012019

  104. Rhim JW, Wang LF (2014) Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 97:174–181. https://doi.org/10.1016/j.clay.2014.05.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Dr. B. Sundaramoorthi, Dean, Fisheries College and Research Institute, Tamil Nadu, India, for permitting to carry out experiments in college laboratories. The authors express their sincere thanks to Dr. C.N. Ravishankar, ICAR- CIFT, Cochin, India, for providing support for analysis of optical parameters. Thanks to Dr. R. Jeya Shakila, TNJFU Referral Laboratory of Fish Quality Monitoring and Certification, Fisheries College and Research Institute, Thoothukudi, India, for the support provided for analysis of mechanical parameters. The authors also thank Dr. C. Vedhi, Department of Chemistry, VOC College, Thoothukudi, India, for providing facilities and guiding in ATR-FTIR and AFM analysis. The authors also acknowledge the support from the Director, Bharat Ratna Prof. CNR Rao Research Centre, Coimbatore, India, for the analysis of XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthiban Fathiraja.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Human and animal rights

This manuscript does not contain any kind of studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4528 kb)

Supplementary file2 (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathiraja, P., Gopalrajan, S., Karunanithi, M. et al. Response surface methodology model to optimize concentration of agar, alginate and carrageenan for the improved properties of biopolymer film. Polym. Bull. 79, 6211–6237 (2022). https://doi.org/10.1007/s00289-021-03797-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03797-5

Keywords

Navigation