Skip to main content

Advertisement

Log in

Comparative study on mechanical properties of virgin and recycled polylactic acid aging in natural weathering and seawater environment

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The environmental issue derived from petroleum-based plastic has brought wide attention on biodegradable plastic. The enforcement of new regulation on the requirement of environmentally friendly plastics has increased the demand of polylactic acid (PLA). Considering the increasing application of PLA, the accumulation of PLA wastes is also expected to increase. Recycling of PLA wastes is one of the promising alternatives in the minimization and sustainability of resources. However, the properties of the recycled PLA (RPLA) are deteriorated. This work intended to study the mechanical properties degradation of virgin PLA (VPLA) and RPLA aging in natural weathering and seawater environment. The degradation in mechanical properties was analyzed by tensile strength, transverse rupture strength (TRS), impact energy, and hardness. The samples were exposed to natural weathering and seawater environments for 150 days, and the mechanical properties degradation was monitored every 30 days. The results showed that the tensile strength, TRS, impact energy, and hardness properties degraded faster in RPLA than in VPLA. It was also noted that the degradation in tensile strength, TRS, impact energy, and hardness properties was more accelerated in seawater environment than in natural weathering environment, which suggested that hydrolysis degradation was a more predominant phenomenon than thermal degradation. No alteration on the surface and physical morphology was observed on the samples for both VPLA and RPLA in natural weathering and seawater environment, which indicated that the samples had undergone bulk degradation. No significant differences were observed in the thermal stability of VPLA and RPLA after aging in both environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lv S, Zhang Y, Gu J, Tan H (2017) Biodegradation behaviour and modelling of soil burial effect on degradation rate of PLA blended with starch and wood flour. Colloids Surf, B 159:800–808. https://doi.org/10.1016/j.colsurfb.2017.08.056

    Article  CAS  Google Scholar 

  2. Deroine M, Le Duigou A, Corre YM, Le Gac PY, Davies P, Cesay G, Bruzaud S (2014) Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym Degrad Stab 108:319–329. https://doi.org/10.1016/j.polymdegradstab.2014.01.020

    Article  CAS  Google Scholar 

  3. Lv S, Liu X, Gu J, Jiang Y, Tan H, Zhang Y (2017) Microstructure analysis of polylactic acid-based composites during degradation in soil. Int Biodeterior Biodegradation 122:53–60. https://doi.org/10.1016/j.ibiod.2017.04.017

    Article  CAS  Google Scholar 

  4. Wan L, Li C, Sun C, Zhou S, Zhang Y (2019) Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl mechacrylate. Compos Sci Technol 181:107675. https://doi.org/10.1016/j.compscitech.2019.06.002

    Article  CAS  Google Scholar 

  5. de Rosario SSM, Campo-Erazo SD, Villada-Castillo HS, Solanilla-Duque JF (2019) Structural changes of cassava starch and polylactic acid films submitted to biodegradation process. Int J Biol Macromol 129:442–447. https://doi.org/10.1016/j.ijbiomac.2019.01.187

    Article  CAS  Google Scholar 

  6. Fahim IS, Chbib H, Mohamed Mahmoud H (2019) The synthesis, production & economic feasibility of manufacturing PLA from agricultural waste. Sustain Cities Soc 12:100142. https://doi.org/10.1016/j.scp.2019.100142

    Article  Google Scholar 

  7. Chuensangjun C, Pechyen C, Sirisansaneeyakul S (2013) Degradation behaviours of different blends of polylactic acid buries in soil. Energy Procedia 34:73–82. https://doi.org/10.1016/j.egypro.2013.06.735

    Article  CAS  Google Scholar 

  8. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  9. Hamad K, Kaseem M, Deri F (2010) Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Polym Bull 65:509–519. https://doi.org/10.1007/s00289-010-0354-2

    Article  CAS  Google Scholar 

  10. Kong J, Li Y, Bai Y, Li Z, Cao Z, Yu Y, Han C, Dong L (2018) High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder. Int J Biol Macromol 112:46–53. https://doi.org/10.1016/j.ijbiomac.2018.01.153

    Article  CAS  PubMed  Google Scholar 

  11. Janczak K, Hrynkiewicz K, Znzjewska Z, Dabrowska G (2018) Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. Int Biodeterior Biodegrad 130:65–75. https://doi.org/10.1016/j.ibiod.2018.03.017

    Article  CAS  Google Scholar 

  12. Wan L, Zhang Y (2018) Jointly modified mechanical properties and accelerated hydrolytic degradation of PLA by interface reinforcement of PLA-WF. J Mech Behav Biomed Mater 88:223–230. https://doi.org/10.1016/j.jmbbm.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Wang Y, Sun X, Peng P, Xiao L (2020) Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 243:125271. https://doi.org/10.1016/j.chemosphere.2019.125271

    Article  CAS  PubMed  Google Scholar 

  14. Maga D, Hiebel M, Thonemann N (2019) Life cycle assessment of recycling options for polylactic acid. Resour Conserv Recycl 149:86–96. https://doi.org/10.1016/j.resconrec.2019.05.018

    Article  Google Scholar 

  15. La Mantia FP, Morreale M (2011) Green composites: a brief review. Compos A Appl Sci Manuf 42:579–588. https://doi.org/10.1016/j.compositesa.2011.01.017

    Article  CAS  Google Scholar 

  16. Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658. https://doi.org/10.1016/j.indcrop.2010.12.031

    Article  CAS  Google Scholar 

  17. Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Kinetics of the hydrolytic degradation of poly(lactic acid). Polym Degrad Stab 97:2460–2466. https://doi.org/10.1016/j.polymdegradstab.2012.06.026

    Article  CAS  Google Scholar 

  18. Sailema-Palate GP, Vidaurre A, Campillo-Fernandez AJ, Castilla-Cortazar I (2016) A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polym Degrad Stab 130:118–125. https://doi.org/10.1016/j.polymdegradstab.2016.06.005

    Article  CAS  Google Scholar 

  19. Elsawy MA, Kim KH, Park JW, Deep A (2017) Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev 79:1346–1352. https://doi.org/10.1016/j.rser.2017.05.143

    Article  CAS  Google Scholar 

  20. Varsavas SD, Kaynak C (2018) Weathering degradation performance of PLA and its glass fiber reinforced composite. Mater Today Commun 15:344–353. https://doi.org/10.1016/j.mtcomm.2017.11.008

    Article  CAS  Google Scholar 

  21. Spiridon I, Darie RN, Kangas H (2016) Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos B 92:19–27. https://doi.org/10.1016/j.compositesb.2016.02.032

    Article  CAS  Google Scholar 

  22. Beltran FR, Lorenzo V, de la Orden MU, Martinez-Urreaga J (2016) Effect of different mechanical recycling processes on the hydrolytic degradation of poly(L-lactic acid). Polym Degrad Stab 133:339–348. https://doi.org/10.1016/j.polymdegradstab.2016.09.018

    Article  CAS  Google Scholar 

  23. Kaynak C, Sari B (2016) Accelerated weathering performance of polylactide and its montmorillonite nanocomposite. Appl Clay Sci 121:86–94. https://doi.org/10.1016/j.clay.2015.12.025

    Article  CAS  Google Scholar 

  24. Techawinyutham L, Siengchin S, Dangtungee R, Parameswaranpillai J (2019) Influence of accelerated weathering on the thermo-mechanical, antibactirial, and rheological properties of polylactic acid incorporated with porous silica-containing varying amount of capsium oleoresin. Compos B 175:107108. https://doi.org/10.1016/j.compositesb.2019.107108

    Article  CAS  Google Scholar 

  25. Ho M, Lau K, Wang H, Hui D (2015) Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos B 8:14–25. https://doi.org/10.1016/j.compositesb.2015.05.048

    Article  CAS  Google Scholar 

  26. Man C, Zhang C, Liu Y, Wang W, Ren W, Jiang L, Reisdorffer F, Nguyen TP, Yi D (2012) Poly (lactic acid)/titanium dioxide composites : preparation and performance under ultraviolet irradiation. Polym Degrad Stab 97:856–862. https://doi.org/10.1016/j.polymdegradstab.2012.03.039

    Article  CAS  Google Scholar 

  27. Pires M, Murariu M, Cardoso AM, Bonnaud L, Dubois P (2019) Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending. Polym Bull. https://doi.org/10.1007/s00289-019-02846-4

    Article  Google Scholar 

  28. Budin S, Maideen NC, Koay MH, Ibrahim D, Yusoff H (2019) A comparison study on mechanical properties of virgin and recycled polylactic acid (PLA). J Phys: Conf Ser 1349:012002. https://doi.org/10.1088/1742-6596/1349/1/012002

    Article  CAS  Google Scholar 

  29. Mohammad ST, Al-Kayiem HH, Aurybi MA, Khlief AK (2020) Measurement of global and direct normal solar energy radiation in Seri Iskandar and comparison with other cities of Malaysia. Case Stud Therm Eng 18:100591. https://doi.org/10.1016/j.csite.2020.100591

    Article  Google Scholar 

  30. Chavez-Montes WM, Gonzalez-Sanchez G, Lopez-Martinez EI, de Lira-gomez P, Ballinas-Casarrubias L, Flores-Gallardo S (2015) Effect of artificial weathering on PLA/nanocomposite molecular weight distribution. Polymers 7:760–776. https://doi.org/10.3390/polym7040760

    Article  CAS  Google Scholar 

  31. Zhang X, Espiritu M, Bilyk A, Kurniawan L (2008) Morphological behaviour of poly(lactic acid) during hydrolytic degradation. Polym Degrad Stab 93:1964–1970. https://doi.org/10.1016/j.polymdegradstab.2008.06.007

    Article  CAS  Google Scholar 

  32. Budin S, Hyie KH, Yussof H, Ishak A, Ginting R (2020) Investigation on mechanical properties of blend virgin and recycled acrylonitrile-butadiene-styrene (ABS) in injection molding. Key Eng Mater 833:8–12

    Article  Google Scholar 

  33. Gorrasi G, Pantani R (2013) Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polym Degrad Stab 98:1006–1014. https://doi.org/10.1016/j.polymdegradstab.2013.02.005

    Article  CAS  Google Scholar 

  34. Torres-Huerta AM, Palma-Ramirez D, Dominguez-Crespo MA, Del Angel-Lopez D, de la Fuente D (2014) Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. Eur Polymer J 61:285–299. https://doi.org/10.1016/j.eurpolymj.2014.10.016

    Article  CAS  Google Scholar 

  35. Beltran-Sanahuja A, Casado-Coy N, Simo-Cabrera L, Sanz-Lazaro C (2020) Monitoring polymer degradation under different conditions in the marine environment. Environ Pollut 259:113836. https://doi.org/10.1016/j.envpol.2019.113836

    Article  CAS  PubMed  Google Scholar 

  36. Zhou X, Yang R, Wang B, Chen K (2019) Development and characterization of bilayer films based on pea starch/polylactic acid and use in cherry tomatoes packaging. Carbohyd Polym 222:114912. https://doi.org/10.1016/j.carbpol.2019.05.042

    Article  CAS  Google Scholar 

  37. Ngaowthong C, Boruvka M, Behalek L, Lenferd P, Svec M, Dangtungee R, Siengchin S, Rangappa RM, Parameswaranpillai J (2019) Recycling of sisal reinforced polypropylene and polylactic acid composites : thermo-mechanical properties, morphology and water absorption behavior. Waste Manag 97:71–81. https://doi.org/10.1016/j.wasman.2019.07.038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by Faculty of Mechanical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salina Budin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budin, S., Jaafar, M. Comparative study on mechanical properties of virgin and recycled polylactic acid aging in natural weathering and seawater environment. Polym. Bull. 79, 4841–4858 (2022). https://doi.org/10.1007/s00289-021-03756-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03756-0

Keywords

Navigation