Skip to main content

Advertisement

Log in

Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a systematic study of titanium oxide (TiO2) nanowires incorporated polymer nanocomposite (PNC) films prepared by a standard solution cast technique is reported. The structural, morphological, dielectric, and electrochemical properties were investigated thoroughly. The polymer nanocomposite films demonstrated improved electrical and electrochemical properties as compared to polymer–salt complex film. The morphological and structural properties have been examined by the field emission scanning electron microscope, Fourier transform infrared spectroscopy, and X-ray diffraction. It is observed that the maximum ionic conductivity is of the order of 10–5 S cm−1 exhibited by 0.5 wt% nanowire added polymer nanocomposite film. The ion transference number was close to unity for optimized film and stability window of about ~ 5 V. The shift of loss tangent peak toward the high-frequency window with nanowire addition indicates a decrease of the relaxation time. The optimized TiO2 nanowire dispersed polymer nanocomposite film has been used to fabricate the electric double-layer capacitor cells. The fabricated cell demonstrates the specific capacitance of about 57.5 F/g (at 10 mV/s). The calculated energy density and power density are 1.38 Wh kg−1 and 0.709 kW kg−1, respectively. The Coulombic efficiency is 97.7% up to the 500 cycles for the fabricated cell. The prepared polymer nanocomposite has the potential to use it as electrolyte cum separator for solid-state electric double-layer capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou G, Xu L, Hu G et al (2019) Nanowires for electrochemical energy storage. Chem Rev 119:11042–11109

    Article  CAS  PubMed  Google Scholar 

  2. Edison TNJI, Atchudan R, Karthik N et al (2019) Direct electro-synthesis of MnO2 nanoparticles over nickel foam from spent alkaline battery cathode and its supercapacitor performance. J Taiwan Inst Chem Eng 97:414–423

    Article  CAS  Google Scholar 

  3. Rajendran S, Babu RS, Sivakumar P (2008) Ionic conduction in plasticized PVC/PAN blend polymer electrolytes. Ionics 14:149–155

    Article  CAS  Google Scholar 

  4. Arya A, Sharma AL (2020) A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. J Mater Sci 55:6242–6304

    Article  CAS  Google Scholar 

  5. Bhatt C, Swaroop R, Anil Arya AL, Sharma, (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5:418–434

    CAS  Google Scholar 

  6. Arya A, Sadiq M, Sharma AL (2018) Structural, electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym Bull 76:5149–5172

    Article  Google Scholar 

  7. Pritam AA, Sharma AL (2019) Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 26:745–766

    Article  Google Scholar 

  8. Nagaraju G, Sekhar SC, Ramulu B, Yu JS (2019) An integrated approach toward renewable energy storage using rechargeable Ag@Ni0.67Co0.33 S-based hybrid supercapacitors. Small 15:1–14

    Article  Google Scholar 

  9. Dhatarwal P, Sengwa RJ, Choudhary S (2019) Effectively improved ionic conductivity of montmorillonite clay nanoplatelets incorporated nanocomposite solid polymer electrolytes for lithium ion-conducting devices. SN Appl Sci 1:1–16

    Article  CAS  Google Scholar 

  10. Dorigato A, Freitas V, Covas JA et al (2019) Evaluation of the role of carbon nanotubes on the electrical properties of poly(butylene terephthalate) nanocomposites for industrial applications. J Elastomers Plast 51:3–25

    Article  CAS  Google Scholar 

  11. Ketabi S, Lian K (2015) The effects of SiO2 and TiO2 nanofillers on structural and electrochemical properties of poly(ethylene oxide)-EMIHSO4 electrolytes. Electrochim Acta 154:404–412

    Article  CAS  Google Scholar 

  12. Regu T, Ambika C, Karuppasamy K et al (2019) Al2O3-incorporated proton-conducting solid polymer electrolytes for electrochemical devices: a proficient method to achieve high electrochemical performance. Ionics 25:5117–5129

    Article  CAS  Google Scholar 

  13. Pandey M, Manoj B, Joshi GM et al (2019) Superior charge discharge ability of reduced graphene oxide/Li-ion embedded polymer composite films. J Mater Sci Mater Electron 30:2136–2145

    Article  CAS  Google Scholar 

  14. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloys Compd 701:652–659

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang X, Feng W et al (2019) Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries. Ionics 25:1471–1480

    Article  CAS  Google Scholar 

  16. Arya A, Saykar NG, Sharma AL (2019) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361

    Article  Google Scholar 

  17. Liu W, Lin D, Sun J et al (2016) Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 10:11407–11413

    Article  CAS  PubMed  Google Scholar 

  18. Mai L, Dong F, Xu X et al (2013) Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene) and MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett 13:740–745

    Article  CAS  PubMed  Google Scholar 

  19. Liu W, Liu N, Sun J et al (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Yang LC, Li LL et al (2011) Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Memb Sci 379:80–85

    Article  CAS  Google Scholar 

  21. Sheng O, Jin C, Luo J et al (2018) Mg2B2O5 Nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett 18:3104–3112

    Article  CAS  PubMed  Google Scholar 

  22. Arya A, Sharma AL (2019) Tailoring of the structural, morphological, electrochemical, and dielectric properties of solid polymer electrolyte. Ionics 25:1617–1632

    Article  CAS  Google Scholar 

  23. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745

    Article  CAS  Google Scholar 

  24. Nor AM, Achoi MF, Mamat MH et al (2012) Synthesis of TiO2 nanowires via hydrothermal method. Jpn J Appl Phys 51:4–8

    Article  Google Scholar 

  25. Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6. Mater Sci Eng B 34:18–26

    Article  Google Scholar 

  26. Shen. Lim C, H. Teoh K, M. Ng H, et al (2017) Ionic conductivity enhancement studies of composite polymer electrolyte based on poly (vinyl alcohol)-lithium perchlorate-titanium oxide. Adv Mater Lett 8:465–471

    Article  Google Scholar 

  27. Tang W, Tang S, Guan X et al (2019) High-performance solid polymer electrolytes filled with vertically aligned 2D materials. Adv Funct Mater 29:1–7

    Article  Google Scholar 

  28. Kiran Kumar K, Ravi M, Pavani Y et al (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B Condens Matter 406:1706–1712

    Article  CAS  Google Scholar 

  29. Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30:165402

    Article  PubMed  Google Scholar 

  30. Tang R, Jiang C, Qian W et al (2015) Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci Rep 5:13465

    Article  Google Scholar 

  31. Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19:795–809

    Article  CAS  Google Scholar 

  32. Kumar A, Madaan M, Arya A et al (2020) Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC. J Mater Sci Mater Electron 31:10873–10888

    Article  CAS  Google Scholar 

  33. Sun J, Li Y, Zhang Q et al (2019) A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem Eng J 375:121922

    Article  CAS  Google Scholar 

  34. Zhu L, Zhu P, Fang Q et al (2018) A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta 292:718–726

    Article  CAS  Google Scholar 

  35. Do NST, Schaetzl DM, Dey B et al (2012) Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: nanorods versus nanospheres. J Phys Chem C 116:21216–21223

    Article  CAS  Google Scholar 

  36. Vasudevan S, Fullerton-Shirey SK (2019) Effect of nanoparticle shape on the electrical and thermal properties of solid polymer electrolytes. J Phys Chem C 123:10720–10726

    Article  CAS  Google Scholar 

  37. Aziz SB, Hamsan MH, Kadir MFZ et al (2019) Development of polymer blend electrolyte membranes based on chitosan: dextran with high ion transport properties for EDLC application. Int J Mol Sci 20:3369

    Article  CAS  PubMed Central  Google Scholar 

  38. Hua S, Jing M, Han C et al (2019) A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int J Energy Res 43:7296–7305

    CAS  Google Scholar 

  39. Shukla N, Thakur AK, Shukla A, Chatterjee R (2014) Dielectric relaxation and thermal studies on dispersed phase polymer nanocomposite films. J Mater Sci Mater Electron 25:2759–2770

    Article  CAS  Google Scholar 

  40. Pritam AA, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J Mater Sci 54:7131–7155

    Article  CAS  Google Scholar 

  41. Roy A, Dutta B, Bhattacharya S (2016) Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv 6:65434–65442

    Article  CAS  Google Scholar 

  42. Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17:135–143

    Article  CAS  Google Scholar 

  43. Ismar E, Karazehir T, Ates M, Sarac AS (2018) Electrospun carbon nanofiber web electrode: supercapacitor behavior in various electrolytes. J Appl Polym Sci 135:45723

    Article  Google Scholar 

  44. Sengwa RJ, Dhatarwal P (2020) Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim Acta 338:135890

    Article  CAS  Google Scholar 

  45. Das S, Ghosh A (2017) Solid polymer electrolyte based on PVDF-HFP and ionic liquid embedded with TiO2 nanoparticle for electric double layer capacitor (EDLC) application. J Electrochem Soc 164:F1348–F1353

    Article  CAS  Google Scholar 

  46. Alexandre SA, Silva GG, Santamaría R et al (2019) A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochim Acta 299:789–799

    Article  CAS  Google Scholar 

  47. Yuan L, Lu XH, Xiao X et al (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    Article  CAS  PubMed  Google Scholar 

  48. Zhou J, Yuan Y, Tang J, Tang W (2019) Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance. Energy Storage Mater 23:594–601

    Article  Google Scholar 

  49. Sarkar S, Arya A, Gaur UK, Gaur A (2020) Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors. Biomass Bioenergy 142:105730

    Article  CAS  Google Scholar 

  50. Kharade PM, Chavan SG, Salunkhe DJ et al (2014) Synthesis and characterization of PANI/MnO2 bi-layered electrode and its electrochemical supercapacitor properties. Mater Res Bull 52:37–41

    Article  CAS  Google Scholar 

  51. Saykar NG, Pilania RK, Banerjee I, Mahapatra SK (2018) Synthesis of NiO-Co3O4 nanosheet and its temperature-dependent supercapacitive behavior. J Phys D Appl Phys 51:475501

    Article  Google Scholar 

  52. Shanmugavadivel M, Violet Dhayabaran V, Subramanian M (2017) Fabrication of a novel polymer nanohybrid electrode material PANI-BaMnO3 for high power supercapacitor application. Port Electrochim Acta 35:225–232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thankful to the Central University of Punjab and Central University of Rajasthan for providing facilities and support. CD and SK gratefully acknowledge the financial support by the Department of Science and Technology (DST-SERB) under Grant No: YSS/2015/001403 and University Grant Commission for Project No. (F4-5(112-FRP)/2014(BSR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, C., Swaroop, R., Arya, A. et al. Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films. Polym. Bull. 79, 4701–4719 (2022). https://doi.org/10.1007/s00289-021-03737-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03737-3

Keywords

Navigation