Skip to main content
Log in

Study on novel biopolymer electrolyte Moringa oleifera gum with ammonium nitrate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new class of environmental friendly bio-based electrolytes has been synthesized from natural tree gum of Moringa oleifera by solution casting technique. An ionic salt of ammonium nitrate (NH4NO3) of varying compositions from 0.2 to 0.6  wt % has been used as an additive to optimize the ionic conductivity of Moringa gum (MG) based biopolymer membranes. X-ray diffractograms affirm the enhancement in amorphous nature of the membranes with the addition of salt, and the high degree of amorphous nature is exhibited by the composition of MG (1 g) with 0.5 wt % NH4NO3. Complex formation between MG and salt has been studied by Fourier transform infra-red (FTIR). Thermal behavioural study by differential scanning calorimetry (DSC) authenticates the flexibility of the prepared MG-based membrane with NH4NO3 by low glass transition temperature. The obtained solid polymer electrolyte MG (1 g) with 0.5 wt % NH4NO3 achieved an ionic conductivity as high as 2.66 × 10−3 S cm−1 at room temperature and the high ionic transference number of 0.98 is observed for the same. Primary proton cell has been fabricated with the optimum conducting polymer membrane (with a configuration Zn: ZnSO4.7H2O:C|| MG :0.5 wt % NH4NO3 Membrane || PbO2: V2O5 ) exhibits an open cell potential of 2.19 V and 1.88 V when shunted through the load resistance of 100 KΩ. Natural tree gum of Moringa oleifera as an electrolyte in the primary proton cell has provided a considerable open cell potential of 2.19 V which authenticates the utility of MG as a successful electrolytic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rayung M, Aung MM, Azhar SC, Abdullah LC, rSu’ait MS, Ahmad A, Jamil SNAM (2020) Bio-based polymer electrolytes for electrochemical devices: insight into the ionic conductivity performance. Materials 13:838. https://doi.org/10.3390/ma13040838

    Article  CAS  PubMed Central  Google Scholar 

  2. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55(2010):1475–1482

    Article  CAS  Google Scholar 

  3. Teoh KH, Lim C-S, Ramesh S (2014) Lithium ion conduction in corn starch based solid polymer electrolytes. Measurement 48:87–95

    Article  Google Scholar 

  4. Mendes J, Esperanca JMSS, Medeiros MJ, Pawlicka A, Silva MM (2017) Structural, morphological, ionic conductivity, and thermal properties of pectin-based polymer electrolytes. Mol cryst liq cryst 643(1):266–273

    Article  CAS  Google Scholar 

  5. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Aristatil G, Mani N, Premalatha M, Vinoth pandi D (2017) Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices. Carbohydr Polym 157:38–47

    Article  CAS  Google Scholar 

  6. Chitra R, Sathya P, Selvasekarapandian S, Meyvel S (2019) Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym Bull 77(6):1555–1579

    Google Scholar 

  7. Mary A, Selvanayagam S, Selvasekarapandian S, Chitra R, Leena chandra M V and Ponraj T, (2020) Lithium ion conducting biopolymer membrane based on K-carrageenan with LiNO3. Ionics 26(9):4311–4326

    Article  Google Scholar 

  8. Rimpy A, Ahuja M (2017) Evaluation of carboxymethyl moringa gum as nanometric carrier. Carbohyd Polym 174:896–903

    Article  CAS  Google Scholar 

  9. Gupta S, Kachhwaha S, Kothari SL, Bohra ManojKumar, Jain R (2020) Surface morphology and physicochemical characterization of thermostable moringa gum: a potential pharmaceutical excipient. ACS Omega 5(45):29189–32919

    Article  CAS  Google Scholar 

  10. Panda DS, Choudhury NSK, Yedukondalu M, Si S, Gupta R (2008) Evaluation of gum of moringa oleifera as a binder and release retardant in tablet formulation Indian journal of. Pharm Sci 70(5):614–618

    CAS  Google Scholar 

  11. Subha V, Ramadoss P, Renganathan S (2016) Incorporation of biotransformed silver nanoparticles in plant polysaccarides resin and their effect on sustained drug release. Polym Sci Ser B 58(1):61–72. https://doi.org/10.1134/S1560090416010073

    Article  CAS  Google Scholar 

  12. Abhishek R, Ahuja M (2018) Moringa gum-g-poly(N-vinyl-2-pyrrolidone) – a potential buccoadhesive polymer. Int J Biol Macromol 109:732–739

    Article  CAS  Google Scholar 

  13. Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha M, Monisha S, Aristatil G (2016) Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. Ionics 23:2781–2790. https://doi.org/10.1007/s11581-016-1876-x

    Article  CAS  Google Scholar 

  14. Ng LS, Mohamad, AA (2006) Protonic battery based on a plasticized chitosan-NH4NO3 solid polymer electrolyte. J Power Sour 163(1):382–385

    Article  CAS  Google Scholar 

  15. Hafiza MN, Isa MIN (2017) Solid polymer electrolyte production from 2-hydroxyethyl cellulose: effect of ammonium nitrate composition on its structural properties. Carbohydr Polym 165:123–131. https://doi.org/10.1016/j.carbpol.2017.02.033

    Article  CAS  PubMed  Google Scholar 

  16. Isa MINM, Rani MSA, Mohamed NS (2015) Investigation of the ionic conduction mechanism in carboxymethyl cellulose/chitosan biopolymer blend electrolyte impregnated with ammonium nitrate. Int J Polym Anal Charact 20(6):491–503

    Article  Google Scholar 

  17. Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Arun VN, Araichimani SC (2014) Preparation and characterization of PVA complexed with amino acid, proline. Ionics 21:387–399. https://doi.org/10.1007/s11581-014-1206-0

    Article  CAS  Google Scholar 

  18. Alves R, Sentanin F, Sabadini RC, Fernandes M, de Zea BV, Pawlicka A, Silva MM (2018) Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices. Electrchim Acta 267:51–62

    Article  CAS  Google Scholar 

  19. Al-Gunaid MQA, Saeed AMN, Siddaramaiah, (2017) Effects of the electrolyte content on the electrical permittivity, thermal stability and optical dispersion of poly (vinyl alcohol)-cesium copper oxide-lithium perchlorate nanocomposite solid-polymer electrolytes. J Appl Polym Sci 135:45852. https://doi.org/10.1002/app.45852

    Article  CAS  Google Scholar 

  20. Mehetre G, Pande V, Kendre P (2015) Isolation and characterization of bionanofibers from moringa oleifera gum as a platform for drug delivery. Nanosci Nanotechnol Res 3(1):1–5

    CAS  Google Scholar 

  21. Singh B, Kumar A (2020) Exploration of arabinogalactan of gum polysaccharide potential in hydrogel formation and controlled drug delivery applications. Int J Biol Macromol 147:482–492

    Article  CAS  Google Scholar 

  22. Manjunathaa V, Subramanyaa K, Devendrappaa H (2014) Structural optical and electrical conductivity properties of Li2SO4 doped polymer electrolytes. Compos Interfaces 21(2):121–131

    Article  Google Scholar 

  23. Ahmad S, Manzoor K, Purwar R, Ikram S (2020) Morphological and swelling potential evaluation of moringa oleifera gum/poly(vinyl alcohol) hydrogels as a superabsorbent. ACS Omega. https://doi.org/10.1021/acsomega.0c01023

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ranote S, Kumar D, Kumari S, Kumar R, Chauhan GS, Joshi V (2019) Green synthesis of moringa oleifera gum-based bifunctional polyurethane foam braced with ash for rapid and efficient dye removal. Chem Eng J 361:1586–1596

    Article  CAS  Google Scholar 

  25. Fuzlin AF, Saadiah MA, Yao Y, Nagao Y, Samsudin AS (2020) Enhancing proton conductivity of sodium alginate doped with glycolic acid in bio-based polymer electrolytes system. J Polym Res 27:207. https://doi.org/10.1007/s10965-020-02142-0

    Article  CAS  Google Scholar 

  26. Taib NU, Idris NH (2014) Plastic crystal-solid biopolymer electrolytes for rechargeable lithium batteries. J Memb Sci. 468:149–154. https://doi.org/10.1016/J.Memsci.2014.06.001

    Article  CAS  Google Scholar 

  27. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped ammonium fluoride. J Phys Chem B 120(44):11567–11573

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not received special grant from any funding agency for this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Ethics declarations

Conflict of interest

Authors have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitra, R., Krishna, M.V. & Selvasekarapandian, S. Study on novel biopolymer electrolyte Moringa oleifera gum with ammonium nitrate. Polym. Bull. 79, 3555–3572 (2022). https://doi.org/10.1007/s00289-021-03676-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03676-z

Keywords

Navigation