Skip to main content
Log in

Engineering of 3D polymer network hydrogels for biomedical applications: a review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The 3D polymer network of hydrogels got immense importance because of distinctive characteristics like high water content, flexible and soft nature, biodegradable, and biocompatible behavior. These materials can be produced by physical or chemical cross-linking of the usual natural and synthetic hydrophilic polymer chains into a 3D network structure. The resemblances of hydrogels with the living body tissues make these materials to be applied extensively in the biomedical field. The present study emphasizes the main characteristics and use of hydrogels in biomedical fields. This review provides the reader with a comprehensive detail of the polymer hydrogel based inventions and products as well as perspective on future potential developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matt 7(19):8725–8736

    Article  CAS  Google Scholar 

  2. Duquette D, Dumont M-J (2019) Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels. Polym Bull 76(5):2683–2710

    Article  CAS  Google Scholar 

  3. Khan M, Shah LA, Khan MA, Khattak NS, Zhao H (2020) Synthesis of an un-modified gum arabic and acrylic acid based physically cross-linked hydrogels with high mechanical, self-sustainable and self-healable performance. Mater Sci Eng: C 116:111278

    Article  CAS  Google Scholar 

  4. Portnov T, Shulimzon TR, Zilberman M (2017) Injectable hydrogel-based scaffolds for tissue engineering applications. Rev Chem Eng 33(1):91–107

    Article  CAS  Google Scholar 

  5. Ali I, Shah LA (2020) Rheological investigation of the viscoelastic thixotropic behavior of synthesized polyethylene glycol-modified polyacrylamide hydrogels using different accelerators. Polym Bull 78:1–17

    Google Scholar 

  6. Hilderbrand AM, Ford EM, Guo C, Sloppy JD, Kloxin AM (2020) Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture. Biomater Sci 8(5):1256–1269

    Article  CAS  PubMed  Google Scholar 

  7. Eliyahu-Gross S, Bitton R (2013) Environmentally responsive hydrogels with dynamically tunable properties as extracellular matrix mimetic. Rev Chem Eng 29(3):159–168

    Article  CAS  Google Scholar 

  8. Lim KS, Martens P, Poole-Warren L (2018) Biosynthetic hydrogels for cell encapsulation. In: Li J, Osada Y, Cooper-White J (eds) Functional hydrogels as biomaterials. Springer, Berlin, pp 1–29

    Google Scholar 

  9. Salomé Veiga A, Schneider JP (2013) Antimicrobial hydrogels for the treatment of infection. Peptide Sci 100(6):637–644

    Article  Google Scholar 

  10. Peppas N, Hilt J, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  11. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Control Rel 161(2):680–692

    Article  CAS  Google Scholar 

  13. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128

    Article  CAS  PubMed  Google Scholar 

  14. Chirila TV, Constable IJ, Crawford GJ, Vijayasekaran S, Thompson DE, Chen Y-C, Fletcher WA, Griffin BJ (1993) Poly (2-hydroxyethyl methacrylate) sponges as implant materials: in vivo and in vitro evaluation of cellular invasion. Biomaterials 14(1):26–38

    Article  CAS  PubMed  Google Scholar 

  15. Yadav N, Chauhan MK, Chauhan VS (2020) Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomater Sci 8(1):84–100

    Article  CAS  PubMed  Google Scholar 

  16. Chao Y, Chen Q, Liu Z (2020) Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater 30(2):1902785

    Article  CAS  Google Scholar 

  17. Andrgie AT, Mekuria SL, Addisu KD, Hailemeskel BZ, Hsu WH, Tsai HC, Lai JY (2019) Non-anticoagulant heparin prodrug loaded biodegradable and injectable thermoresponsive hydrogels for enhanced anti-metastasis therapy. Macromol Biosci 19(5):1800409

    Article  Google Scholar 

  18. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sato T, Uchida R, Tanigawa H, Uno K, Murakami A (2005) Application of polymer gels containing side-chain phosphate groups to drug-delivery contact lenses. J Appl Polym Sci 98(2):731–735

    Article  CAS  Google Scholar 

  20. Rodriguez R, Alvarez-Lorenzo C, Concheiro A (2003) Interactions of ibuprofen with cationic polysaccharides in aqueous dispersions and hydrogels. Rheological and diffusional implications. Eur J Pharm Sci 20(4–5):429–438

    Article  CAS  PubMed  Google Scholar 

  21. Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R (2007) Antifungal hydrogels. Proc Natl Acad Sci 104(32):12994–12998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bharathi K, Pazhanisamy P (2018) Synthesis and characterization of poly (N-tert-amylacrylamide-co-acrylamide/2-Acrylamido-2-methylpropanesulphonic Acid Sodium Salt) zinc oxide nanocomposite hydrogels. Chem Sci 7(3):515–521

    CAS  Google Scholar 

  23. Bahram M, Mohseni N, Moghtader M (2016) An introduction to hydrogels and some recent applications. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. IntechOpen, London

    Google Scholar 

  24. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):1–17

    Article  Google Scholar 

  25. Fujita S, Hara S, Hosono A, Sugihara S, Uematsu H, Suye S-i (2020) Hyaluronic acid hydrogel crosslinked with complementary DNAs. Adv Polym Technol 2020:1–7

    Article  Google Scholar 

  26. Chu T-W, Feng J, Yang J, Kopeček J (2015) Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation. J Control Rel 220:608–616

    Article  CAS  Google Scholar 

  27. Feeney M, Giannuzzo M, Paolicelli P, Casadei MA (2007) Hydrogels of dextran containing nonsteroidal anti-inflammatory drugs as pendant agents. Drug Deliv 14(2):87–93

    Article  CAS  PubMed  Google Scholar 

  28. Schoenmakers RG, Van De Wetering P, Elbert DL, Hubbell JA (2004) The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J Control Rel 95(2):291–300

    Article  CAS  Google Scholar 

  29. Fang Y, Tan J, Lim S, Soh S (2018) Rupturing cancer cells by the expansion of functionalized stimuli-responsive hydrogels. NPG Asia Mater 10(2):e465–e465

    Article  CAS  Google Scholar 

  30. Jones DS, Andrews GP, Caldwell DL, Lorimer C, Gorman SP, McCoy CP (2012) Novel semi-interpenetrating hydrogel networks with enhanced mechanical properties and thermoresponsive engineered drug delivery, designed as bioactive endotracheal tube biomaterials. Eur J Pharm Biopharm 82(3):563–571

    Article  CAS  PubMed  Google Scholar 

  31. Coughlan D, Corrigan O (2008) Release kinetics of benzoic acid and its sodium salt from a series of poly (N-isopropylacrylamide) matrices with various percentage crosslinking. J Pharm Sci 97(1):318–330

    Article  CAS  PubMed  Google Scholar 

  32. Jones DS, Lorimer CP, McCoy CP, Gorman SP (2008) Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. J Biomed Mater Res Part B 85(2):417–426

    Article  Google Scholar 

  33. Jones DS, Lorimer CJ, Andrews GP, McCoy CP, Gorman SP (2007) An examination of the thermorheological and drug release properties of zinc tetraphenylporphyrin-containing thermoresponsive hydrogels, designed as light activated antimicrobial implants. Chem Eng Sci 62(4):990–999

    Article  CAS  Google Scholar 

  34. Yoshida T, Aoyagi T, Kokufuta E, Okano T (2003) Newly designed hydrogel with both sensitive thermoresponse and biodegradability. J Polym Sci Part A 41(6):779–787

    Article  CAS  Google Scholar 

  35. Kofron MD, Laurencin CT (2006) Bone tissue engineering by gene delivery. Adv Drug Deliv Rev 58(4):555–576

    Article  CAS  PubMed  Google Scholar 

  36. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthopaed Relat Res 329:300–309

    Article  Google Scholar 

  37. Kondiah PJ, Choonara YE, Kondiah PP, Marimuthu T, Kumar P, Du Toit LC, Pillay V (2016) A review of injectable polymeric hydrogel systems for application in bone tissue engineering. Molecules 21(11):1580

    Article  PubMed Central  Google Scholar 

  38. Vo TN, Ekenseair AK, Spicer PP, Watson BM, Tzouanas SN, Roh TT, Mikos AG (2015) In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. J Control Rel 205:25–34

    Article  CAS  Google Scholar 

  39. Wang D, Hu Y, Liu P, Luo D (2017) Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness. Acc Chem Res 50(4):733–739

    Article  CAS  PubMed  Google Scholar 

  40. Reif J, Chandran H, Gopalkrishnan N, LaBean T (2012) Self-assembled DNA nanostructures and DNA Devices. Nanofabrication handbook. pp 299–328

  41. Yongzheng Xing EC, Yang Y, Chen P, Zhang T, Sun Y, Yang Z, Liu D (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23(9):1117–1121

    Article  PubMed  Google Scholar 

  42. Shao Y, Jia H, Cao T, Liu D (2017) Supramolecular hydrogels based on DNA self-assembly. Acc Chem Res 50(4):659–668

    Article  CAS  PubMed  Google Scholar 

  43. Rajagopalan R, Yakhmi JV (2017) Nanotechnological approaches toward cancer chemotherapy. In: Nanostructures for cancer therapy. Elsevier, pp 211–240

  44. Zhihao Li JW, Li Y, Liu X, Yuan Q (2018) Self-assembled DNA nanomaterials with highly programmed structures and functions. Mater Chem Front 2(3):423–436

    Article  Google Scholar 

  45. Clark DP, Pazdernik NJ (2015) Biotechnology. Newnes, London

    Google Scholar 

  46. Kong G, Xiong M, Liu L, Hu L, Meng HM, Ke G, Tan W (2021) DNA origami-based protein networks: from basic construction to emerging applications. Chem Soc Rev 50:1846–1873

    Article  CAS  PubMed  Google Scholar 

  47. Praetorius F, Kick B, Behler KL, Honemann MN, Weuster-Botz D, Dietz H (2017) Biotechnological mass production of DNA origami. Nature 552(7683):84–87

    Article  CAS  PubMed  Google Scholar 

  48. Li F, Lyu D, Liu S, Guo W (2020) DNA Hydrogels and microgels for biosensing and biomedical applications. Adv Mater 32(3):1806538

    Article  CAS  Google Scholar 

  49. Yan F, Kuang Y, Ren B, Wang J, Zhang D, Lin H, Yang B, Zhou X, Zhou H (2018) Highly efficient A· T to G· C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11(4):631–634

    Article  CAS  PubMed  Google Scholar 

  50. Watson BM, Vo TN, Tatara AM, Shah SR, Scott DW, Engel PS, Mikos AG (2015) Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering. Biomaterials 67:286–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ma D, An G, Liang M, Liu Y, Zhang B, Wang Y (2016) A composited PEG-silk hydrogel combining with polymeric particles delivering rhBMP-2 for bone regeneration. Mater Sci Eng: C 65:221–231

    Article  CAS  Google Scholar 

  52. Kawata M, Azuma K, Izawa H, Morimoto M, Saimoto H, Ifuku S (2016) Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material. Carbohydr Polym 136:964–969

    Article  CAS  PubMed  Google Scholar 

  53. Cui N, Qian J, Liu T, Zhao N, Wang H (2015) Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering. Carbohydr Polym 126:192–198

    Article  CAS  PubMed  Google Scholar 

  54. Rimmer S (2011) Biomedical hydrogels: biochemistry, manufacture and medical applications. Elsevier, Amsterdam

    Book  Google Scholar 

  55. Bouten PJ, Zonjee M, Bender J, Yauw ST, van Goor H, van Hest JC, Hoogenboom R (2014) The chemistry of tissue adhesive materials. Prog Polym Sci 39(7):1375–1405

    Article  CAS  Google Scholar 

  56. Peppas NA (2010) Biomedical applications of hydrogels handbook. Springer Science & Business Media, Berlin

    Google Scholar 

  57. Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Tj N, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253

    Article  PubMed  Google Scholar 

  58. Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, Guillén AdJP, Tapia-Pérez H, Castañón GM (2008) The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med 4(3):237–240

    Article  Google Scholar 

  59. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  PubMed  Google Scholar 

  60. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupova J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30(31):6333–6340

    Article  PubMed  Google Scholar 

  61. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Article  CAS  PubMed  Google Scholar 

  62. Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103(1):125–133

    Article  CAS  Google Scholar 

  63. Zan X, Kozlov M, McCarthy TJ, Su Z (2010) Covalently attached, silver-doped poly (vinyl alcohol) hydrogel films on poly (L-lactic acid). Biomacromol 11(4):1082–1088

    Article  CAS  Google Scholar 

  64. Thomas V, Yallapu MM, Sreedhar B, Bajpai S (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interf Sci 315(1):389–395

    Article  CAS  Google Scholar 

  65. Rattanaruengsrikul V, Pimpha N, Supaphol P (2009) Development of gelatin hydrogel pads as antibacterial wound dressings. Macromol Biosci 9(10):1004–1015

    Article  CAS  PubMed  Google Scholar 

  66. Singh R, Singh D (2012) Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci: Mater Med 23(11):2649–2658

    CAS  Google Scholar 

  67. Marchesan S, Qu Y, Waddington LJ, Easton CD, Glattauer V, Lithgow TJ, McLean KM, Forsythe JS, Hartley PG (2013) Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials 34(14):3678–3687

    Article  CAS  PubMed  Google Scholar 

  68. De Giglio E, Cometa S, Ricci M, Cafagna D, Savino A, Sabbatini L, Orciani M, Ceci E, Novello L, Tantillo G (2011) Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomater 7(2):882–891

    Article  PubMed  Google Scholar 

  69. Tsou T-L, Tang S-T, Huang Y-C, Wu J-R, Young J-J, Wang H-J (2005) Poly (2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. J Mater Sci: Mater Med 16(2):95–100

    CAS  Google Scholar 

  70. Li H, Yang J, Hu X, Liang J, Fan Y, Zhang X (2011) Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res Part A 98(1):31–39

    Article  Google Scholar 

  71. Peng K-T, Chen C-F, Chu I-M, Li Y-M, Hsu W-H, Hsu RW-W, Chang P-J (2010) Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 31(19):5227–5236

    Article  CAS  PubMed  Google Scholar 

  72. Chang C-H, Lin Y-H, Yeh C-L, Chen Y-C, Chiou S-F, Hsu Y-M, Chen Y-S, Wang C-C (2009) Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromol 11(1):133–142

    Article  Google Scholar 

  73. Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly (N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res Part B 100(3):668–676

    Article  Google Scholar 

  74. Laverty G, Gorman SP, Gilmore BF (2012) Antimicrobial peptide incorporated poly (2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J Biomed Mater Res Part A 100(7):1803–1814

    Article  Google Scholar 

  75. Hudson SP, Langer R, Fink GR, Kohane DS (2010) Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 31(6):1444–1452

    Article  CAS  PubMed  Google Scholar 

  76. Halpenny GM, Steinhardt RC, Okialda KA, Mascharak PK (2009) Characterization of pHEMA-based hydrogels that exhibit light-induced bactericidal effect via release of NO. J Mater Sci: Mater Med 20(11):2353

    CAS  Google Scholar 

  77. Huang L, Li R, Liu W, Dai J, Du Z, Wang X, Ma J, Zhao J (2014) Dynamic culture of a thermosensitive collagen hydrogel as an extracellular matrix improves the construction of tissue-engineered peripheral nerve. Neural Regener Res 9(14):1371

    Article  CAS  Google Scholar 

  78. Cheng G, Xue H, Li G, Jiang S (2010) Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean. Langmuir 26(13):10425–10428

    Article  CAS  PubMed  Google Scholar 

  79. Fallows SJ, Garland MJ, Cassidy CM, Tunney MM, Singh TRR, Donnelly RF (2012) Electrically-responsive anti-adherent hydrogels for photodynamic antimicrobial chemotherapy. J Photochem Photobiol B 114:61–72

    Article  CAS  PubMed  Google Scholar 

  80. Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  81. Kashyap N, Kumar N, Kumar MR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carr Syst 22(2):107–150

    Article  CAS  Google Scholar 

  82. Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Rel 109(1–3):256–274

    Article  CAS  Google Scholar 

  83. Einerson NJ, Stevens KR, Kao WJ (2003) Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 24(3):509–523

    Article  CAS  PubMed  Google Scholar 

  84. Jin C, Song W, Liu T, Xin J, Hiscox WC, Zhang J, Liu G, Kong Z (2018) Temperature and pH responsive hydrogels using methacrylated lignosulfonate cross-linker: synthesis, characterization, and properties. ACS Sust Chem Eng 6(2):1763–1771

    Article  CAS  Google Scholar 

  85. Liu C, Zhang Z, Liu X, Ni X, Li J (2013) Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Adv 3(47):25041–25049

    Article  CAS  Google Scholar 

  86. Buhus G, Peptu C, Popa M, Desbrieres J (2009) Controlled release of water soluble antibiotics by carboxymethylcellulose-and gelatin-based hydrogels crosslinked with epichlorohydrin. Cellul Chem Technol 43(4):141

    CAS  Google Scholar 

  87. Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2(11):1500122

    Article  Google Scholar 

  88. Langer R (2007) Tissue engineering: perspectives, challenges, and future directions. J Tissue Eng 13(1):1–2

    Article  Google Scholar 

  89. El-Sherbiny IM, Yacoub MH (2013) Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 3:38

    Article  Google Scholar 

  90. Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromol 12(4):851–858

    Article  CAS  Google Scholar 

  91. Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812):293–294

    Article  CAS  PubMed  Google Scholar 

  92. Barnett S, Irving S (1991) Studies of wound healing and the effect of dressings. In: High performance biomaterials. pp 583–620

  93. Quinn K, Courtney JM, Evans J, Gaylor J, Reid W (1985) Principles of burn dressings. Biomaterials 6(6):369–377

    Article  CAS  PubMed  Google Scholar 

  94. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res 48(5):631–639

    Article  CAS  PubMed  Google Scholar 

  95. Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26(32):6335–6342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Higher Education Commission of Pakistan for financial support under the NRPU Project No: 7309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqman Ali Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.A., Shah, L.A., Shah, M. et al. Engineering of 3D polymer network hydrogels for biomedical applications: a review. Polym. Bull. 79, 2685–2705 (2022). https://doi.org/10.1007/s00289-021-03638-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03638-5

Keywords

Navigation