Skip to main content

Crosslinking Strategies to Develop Hydrogels for Biomedical Applications

  • Chapter
  • First Online:
Nano Hydrogels

Abstract

Hydrogels can be defined as the networks of either chemically or physically crosslinked hydrophilic polymers containing large amounts of water when hydrated. They are usually used as biomaterials for various applications in the biomedical field. These applications vary from 3D cell culture and drug delivery to tissue engineering and regenerative medicine. The most important step in the development of hydrogel-based biomaterials is to make them stable under application conditions. Crosslinking of polymer chains using various approaches is utilized to stabilize the hydrogels and make them appropriate biomaterials. Mechanical and swelling characteristics of the developed materials mainly depend on the crosslinking density. Depending upon the specific requirements, different crosslinking strategies can be adopted. This chapter covers the available methods of crosslinking of polymers and preparing hydrogels. It also provides some of the advantages and disadvantages of each approach along with potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23. https://doi.org/10.1016/J.ADDR.2012.09.010

    Article  Google Scholar 

  2. Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 13–36

    Google Scholar 

  3. Augustine R, Rajendran R, Cvelbar U, Mozetič M, George A (2013) Biopolymers for health, food, and cosmetic applications. In: Handbook of biopolymer-based materials: from blends and composites to gels and complex networks, pp 801–849

    Google Scholar 

  4. Bahrami MK, Mahdavinia GR (2016) Carrageenan-based semi-IPN nanocomposite hydrogels: swelling kinetic and slow release of sequestrene Fe 138 fertilizer. Azarian J Agric 3:1–10

    Google Scholar 

  5. Chen S, Lu X (2016) Smart materials as forward osmosis draw solutes. In: Wang P (ed) Smart materials for advanced environmental applications. Royal Society of Chemistry, pp 19–50

    Google Scholar 

  6. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9:4686–4697. https://doi.org/10.1021/acsnano.5b01433

    Article  CAS  Google Scholar 

  7. Sosnik A, Augustine R (2016) Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 103:105–120. https://doi.org/10.1016/j.addr.2015.12.022

    Article  CAS  Google Scholar 

  8. Kamoun EA, Kenawy ERS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233

    Article  CAS  Google Scholar 

  9. Augustine R, Kalarikkal N, Thomas S (2014) Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog Biomater 3:103–113. https://doi.org/10.1007/s40204-014-0030-y

    Article  Google Scholar 

  10. Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF (2006) Silicone hydrogel contact lenses and the ocular surface. Ocul Surf 4:24–43. https://doi.org/10.1016/S1542-0124(12)70262-8

    Article  Google Scholar 

  11. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25. https://doi.org/10.1016/j.actbio.2017.01.036

    Article  CAS  Google Scholar 

  12. Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 5:672–687. https://doi.org/10.1039/c3sm52272e

    Article  CAS  Google Scholar 

  13. Li CH, Wang C, Keplinger C, Zuo JL, Jin L, Sun Y, Zheng P, Cao Y, Lissel F, Linder C, You XZ, Bao Z (2016) A highly stretchable autonomous self-healing elastomer. Nat Chem 8:618–624. https://doi.org/10.1038/nchem.2492

    Article  CAS  Google Scholar 

  14. Augustine R, Kalarikkal N, Thomas S (2016) Effect of zinc oxide nanoparticles on the in vitro degradation of electrospun polycaprolactone membranes in simulated body fluid. Int J Polym Mater Polym Biomater 65:28–37. https://doi.org/10.1080/00914037.2015.1055628

    Article  CAS  Google Scholar 

  15. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33:362–369. https://doi.org/10.1016/J.TIBTECH.2015.03.008

    Article  CAS  Google Scholar 

  16. Augustine R, Nethi SK, Kalarikkal N, Thomas S, Patra CR (2017) Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J Mater Chem B 5:4660–4672. https://doi.org/10.1039/c7tb00518k

    Article  CAS  Google Scholar 

  17. Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 155:208–217. https://doi.org/10.1016/J.CARBPOL.2016.08.073

    Article  CAS  Google Scholar 

  18. Holloway JL, Ma H, Rai R, Burdick JA (2014) Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J Control Release. https://doi.org/10.1016/j.jconrel.2014.05.053

    Article  Google Scholar 

  19. Bakaic E, Smeets NMB, Hoare T (2015) Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. RSC Adv 5:35469–35486. https://doi.org/10.1039/c4ra13581d

    Article  CAS  Google Scholar 

  20. Hu Y, Ren G, Deng L, Zhang J, Liu H, Mu S, Wu T (2016) Degradable UV-crosslinked hydrogel for the controlled release of triclosan with reduced cytotoxicity. Mater Sci Eng C 67:151–158. https://doi.org/10.1016/J.MSEC.2016.05.003

    Article  CAS  Google Scholar 

  21. Augustine R, Venugopal B, Snigdha. S, Kalarikkal N, Thomas S (2015) Polyuronates and their application in drug delivery and cosmetics. In: Sabu Thomas JP (ed) Green polymers and environmental pollution control. CRC Press, pp 240–269

    Google Scholar 

  22. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  Google Scholar 

  23. Ertesvåg H (2015) Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 6:523

    Google Scholar 

  24. Utech S, Prodanovic R, Mao AS, Ostafe R, Mooney DJ, Weitz DA (2015) Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv Healthc Mater 4:1628–1633. https://doi.org/10.1002/adhm.201500021

    Article  CAS  Google Scholar 

  25. Zhang Z, Zhang R, Zou L, McClements DJ (2016) Protein encapsulation in alginate hydrogel beads: effect of pH on microgel stability, protein retention and protein release. Food Hydrocoll 58:308–315. https://doi.org/10.1016/j.foodhyd.2016.03.015

    Article  CAS  Google Scholar 

  26. Augustine R, Rajarathinam K (2012) Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies. Int J Nano Dimens 2:205–212. https://doi.org/10.7508/ijnd.2011.03.009

    Article  CAS  Google Scholar 

  27. Ren Y, Xie H, Liu X, Bao J, Yu W, Ma X (2016) Comparative investigation of the binding characteristics of poly-L-lysine and chitosan on alginate hydrogel. Int J Biol Macromol 84:135–141. https://doi.org/10.1016/J.IJBIOMAC.2015.12.008

    Article  CAS  Google Scholar 

  28. Chen H, Xing X, Tan H, Jia Y, Zhou T, Chen Y, Ling Z, Hu X (2017) Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C 70:287–295. https://doi.org/10.1016/J.MSEC.2016.08.086

    Article  CAS  Google Scholar 

  29. Augustine R, Ashkenazi DL, Arzi RS, Zlobin V, Shofti R, Sosnik A (2018) Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination. Acta Biomater 74:344–359. https://doi.org/10.1016/j.actbio.2018.04.045

    Article  CAS  Google Scholar 

  30. Costa MJ, Marques AM, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA (2018) Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll 81:442–448. https://doi.org/10.1016/J.FOODHYD.2018.03.014

    Article  CAS  Google Scholar 

  31. Kashima K, Imai M (2012) Advanced membrane material from marine biological polymer and sensitive molecular-size recognition for promising separation technology. In: Advancing desalination

    Google Scholar 

  32. Penhasi A (2017) Preparation and characterization of in-situ ionic cross-linked pectin films: II. Biodegradation and drug diffusion. Carbohydr Polym 157:651–659. https://doi.org/10.1016/j.carbpol.2016.10.027

    Article  CAS  Google Scholar 

  33. Bera H, Kumar S (2018) Diethanolamine-modified pectin based core-shell composites as dual working gastroretentive drug-cargo. Int J Biol Macromol 108:1053–1062. https://doi.org/10.1016/j.ijbiomac.2017.11.019

    Article  CAS  Google Scholar 

  34. Bera H, Nadimpalli J, Kumar S, Vengala P (2017) Kondogogu gum-Zn+2-pectinate emulgel matrices reinforced with mesoporous silica for intragastric furbiprofen delivery. Int J Biol Macromol 104:1229–1237. https://doi.org/10.1016/j.ijbiomac.2017.07.027

    Article  CAS  Google Scholar 

  35. Augustine R, Augustine A, Kalarikkal N, Thomas S (2016) Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings. Prog Biomater 5:223–235. https://doi.org/10.1007/s40204-016-0060-8

    Article  CAS  Google Scholar 

  36. Guru PR, Bera H, Das MP, Hasnain MS, Nayak AK (2018) Aceclofenac-loaded Plantago ovata F. husk mucilage-Zn+2-pectinate controlled-release matrices. Starch/Staerke 70:1–8. https://doi.org/10.1002/star.201700136

    Article  CAS  Google Scholar 

  37. Hwang SW, Shin JS (2018) Pectin-coated curcumin-chitosan microparticles crosslinked with Mg2+ for delayed drug release in the digestive system. Int J Polym Sci 2018:1–7. https://doi.org/10.1155/2018/2071071

  38. Ogueri KS, Ivirico JLE, Nair LS, Allcock HR, Laurencin CT (2017) Biodegradable polyphosphazene-based blends for regenerative engineering. Regen Eng Transl Med 3:15–31. https://doi.org/10.1007/s40883-016-0022-7

    Article  CAS  Google Scholar 

  39. Garlapati S, Eng NF, Wilson HL, Buchanan R, Mutwiri GK, Babiuk LA, Gerdts V (2010) PCPP (poly[di(carboxylatophenoxy)-phosphazene]) microparticles co-encapsulating ovalbumin and CpG oligo-deoxynucleotides are potent enhancers of antigen specific Th1 immune responses in mice. Vaccine 28:8306–8314. https://doi.org/10.1016/j.vaccine.2010.09.080

    Article  CAS  Google Scholar 

  40. Islam M, Park T-E, Reesor E, Cherukula K, Hasan A, Firdous J, Singh B, Kang S-K, Choi Y-J, Park I-K, Cho C-S (2015) Mucoadhesive chitosan derivatives as novel drug carriers. Curr Pharm Des 21:4285–4309. https://doi.org/10.2174/1381612821666150901103819

    Article  CAS  Google Scholar 

  41. Ahmed R, Tariq M, Ali I, Asghar R, Noorunnisa Khanam P, Augustine R, Hasan A (2018) Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 120:385–393. https://doi.org/10.1016/j.ijbiomac.2018.08.057

    Article  CAS  Google Scholar 

  42. Zahid AA, Ahmed R, Raza ur Rehman S, Augustine R, Tariq M, Hasan A (2019) Nitric oxide releasing chitosan-poly (vinyl alcohol) hydrogel promotes angiogenesis in chick embryo model. Int J Biol Macromol 136:901–910. https://doi.org/10.1016/j.ijbiomac.2019.06.136

    Article  CAS  Google Scholar 

  43. Jin RM, Sultana N, Baba S, Hamdan S, Ismail AF (2015) Porous PCL/chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: fabrication and evaluation. J Nanomater 357372:1–8. https://doi.org/10.1155/2015/357372

    Article  CAS  Google Scholar 

  44. Thakral NK, Ray AR, Majumdar DK (2010) Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mater Sci Mater Med 21:2691–2699. https://doi.org/10.1007/s10856-010-4109-2

    Article  CAS  Google Scholar 

  45. Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG (2015) Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 117:524–536. https://doi.org/10.1016/J.CARBPOL.2014.09.094

    Article  CAS  Google Scholar 

  46. Deng A, Kang X, Zhang J, Yang Y, Yang S (2017) Enhanced gelation of chitosan/β-sodium glycerophosphate thermosensitive hydrogel with sodium bicarbonate and biocompatibility evaluated. Mater Sci Eng C 78:1147–1154. https://doi.org/10.1016/j.msec.2017.04.109

    Article  CAS  Google Scholar 

  47. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702. https://doi.org/10.1016/j.foodhyd.2016.06.001

    Article  CAS  Google Scholar 

  48. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39–47. https://doi.org/10.1016/S0144-8617(00)00281-2

    Article  CAS  Google Scholar 

  49. Augustine R, Dan P, Schlachet I, Rouxel D, Menu P, Sosnik A (2019) Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. Int J Pharm 559:420–426. https://doi.org/10.1016/j.ijpharm.2019.01.063

    Article  CAS  Google Scholar 

  50. Hossain KS, Miyanaga K, Maeda H, Nemoto N (2001) Sol-gel transition behavior of pure ι-carrageenan in both salt-free and added salt states. Biomacromolecules 2:442–449. https://doi.org/10.1021/bm000117f

    Article  CAS  Google Scholar 

  51. Respiratorio S, Crítico P, García-Fernández J, Castro L (1980) I. Soporte Respiratorio en el Paciente Crítico pediátrico. 1–10. https://doi.org/10.1016/0022-2836(80)90291-0

  52. Pourjavadi A, Sadeghi M, Hosseinzadeh H (2004) Modified carrageenan. Preparation, swelling behavior, salt- and pH-sensitivity of partially hydrolyzed crosslinked carrageenan-graft-polymethacrylamide superabsorbent hydrogel. Polym Adv Technol 15:645–653. https://doi.org/10.1002/pat.524

    Article  CAS  Google Scholar 

  53. Watanabe T, Ohtsuka A, Murase N, Barth P, Gersonde K (1996) NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magn Reson Med. https://doi.org/10.1002/mrm.1910350511

  54. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10:27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  55. Augustine R, Hasan A, Yadu Nath VK, Thomas J, Augustine A, Kalarikkal N, Al Moustafa AE, Thomas S (2018) Electrospun polyvinyl alcohol membranes incorporated with green synthesized silver nanoparticles for wound dressing applications. J Mater Sci Mater Med 29:205–212. https://doi.org/10.1007/s10856-018-6169-7

    Article  CAS  Google Scholar 

  56. Guan Y, Bian J, Peng F, Zhang XM, Sun RC (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydr Polym 101:272–280. https://doi.org/10.1016/j.carbpol.2013.08.085

    Article  CAS  Google Scholar 

  57. Kenawy ER, Kamoun EA, Mohy Eldin MS, El-Meligy MA (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7:372–380. https://doi.org/10.1016/j.arabjc.2013.05.026

    Article  CAS  Google Scholar 

  58. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479. https://doi.org/10.1021/ma9907587

    Article  CAS  Google Scholar 

  59. Bai H, Li Z, Zhang S, Wang W, Dong W (2018) Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Carbohydr Polym 200:468–476. https://doi.org/10.1016/j.carbpol.2018.08.041

    Article  CAS  Google Scholar 

  60. Yan EK, Cao HL, Zhang CY, Lu QQ, Ye YJ, He J, Huang LJ, Yin DC (2015) Cross-linked protein crystals by glutaraldehyde and their applications. RSC Adv 5:26163–26174

    Article  CAS  Google Scholar 

  61. Peppas NA, Scott JE (1992) Controlled release from poly(vinyl alcohol) gels prepared by freezing-thawing processes. J Control Release 18:95–100. https://doi.org/10.1016/0168-3659(92)90178-T

    Article  CAS  Google Scholar 

  62. Takamura A, Ishii F, Hidaka H (1992) Drug release from poly(vinyl alcohol) gel prepared by freeze-thaw procedure. J Control Release 20:21–27. https://doi.org/10.1016/0168-3659(92)90135-E

    Article  CAS  Google Scholar 

  63. Tashiro K, Kouno N, Wang H, Tsuji H (2017) Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X-ray diffraction analysis. Macromolecules 50:8048–8065. https://doi.org/10.1021/acs.macromol.7b01468

    Article  CAS  Google Scholar 

  64. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906. https://doi.org/10.1021/ma00170a034

    Article  CAS  Google Scholar 

  65. Lim DW, Park TG (2000) Stereocomplex formation between enantiomeric PLA-PEG-PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J Appl Polym Sci 75:1615–1623. https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13%3c1615::AID-APP7%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  66. Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun 21:464–471. https://doi.org/10.1002/(SICI)1521-3927(20000501)21:8%3c464::AID-MARC464%3e3.0.CO;2-#

    Article  CAS  Google Scholar 

  67. Khan S, Ullah A, Ullah K, Rehman NU (2016) Insight into hydrogels. Des Monomers Polym 19:456–478. https://doi.org/10.1080/15685551.2016.1169380

    Article  CAS  Google Scholar 

  68. Förster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217. https://doi.org/10.1002/(SICI)1521-4095(199802)10:3%3c195::AID-ADMA195%3e3.0.CO;2-V

    Article  Google Scholar 

  69. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Article  CAS  Google Scholar 

  70. Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG−PLGA−PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069. https://doi.org/10.1021/ma9908999

    Article  CAS  Google Scholar 

  71. Lin HH, Cheng YL (2001) In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(n-isopropylacrylamide) of varying architectures. Macromolecules 34:3710–3715. https://doi.org/10.1021/ma001852m

    Article  CAS  Google Scholar 

  72. Cai L, Dewi RE, Heilshorn SC (2015) Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv Funct Mater 25:1344–1351. https://doi.org/10.1002/adfm.201403631

    Article  CAS  Google Scholar 

  73. Lee DS, Jeong B, Bae YH, Kim SW (1996) New thermoreversible and biodegradable block copolymer hydrogels. Proc Control Release Soc 22:228–229

    Google Scholar 

  74. Jeong B, Lee DS, Shon JI, Bae YH, Kim SW (1999) Thermoreversible gelation of poly(ethylene oxide) biodegradable polyester block copolymers. J Polym Sci Part A Polym Chem 37:751–760. https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6%3c751::AID-POLA10%3e3.0.CO;2-0

    Article  CAS  Google Scholar 

  75. Huh KM, Bae YH (1999) Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid) alternating multiblock copolymers. Polymer (Guildf) 40:6147–6155. https://doi.org/10.1016/S0032-3861(98)00822-2

    Article  CAS  Google Scholar 

  76. Bae YH, Huh KM, Kim Y, Park KH (2000) Biodegradable amphiphilic multiblock copolymers and their implications for biomedical applications. J Control Release 64:3–13. https://doi.org/10.1016/S0168-3659(99)00126-1

    Article  CAS  Google Scholar 

  77. Bezemer JM, Grijpma DW, Dijkstra PJ, Van Blitterswijk CA, Feijen J (1999) A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization. J Control Release 62:393–405. https://doi.org/10.1016/S0168-3659(99)00170-4

    Article  CAS  Google Scholar 

  78. Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, Feijen J, Van Blitterswijk CA (2000) Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylene terephthalate) matrices. J Control Release 64:179–192. https://doi.org/10.1016/S0168-3659(99)00127-3

    Article  CAS  Google Scholar 

  79. Bezemer JM, Grijpma DW, Dijkstra PJ, Van Blitterswijk CA, Feijen J (2000) Control of protein delivery from amphiphilic poly(ether ester) multiblock copolymers by varying their water content using emulsification techniques. J Control Release 66:307–320. https://doi.org/10.1016/S0168-3659(99)00287-4

    Article  CAS  Google Scholar 

  80. Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, Van Blitterswijk CA, Feijen J (2000a) Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. Influence of preparation techniques on particle characteristics and protein delivery. J Control Release 67:233–248. https://doi.org/10.1016/S0168-3659(00)00213-3

    Article  CAS  Google Scholar 

  81. Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, Van Blitterswijk CA, Feijen J (2000b) Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 2. Modulation of release rate. J Control Release 67:233–248. https://doi.org/10.1016/S0168-3659(00)00212-1

    Article  CAS  Google Scholar 

  82. Van Dijkhuizen-Radersma R, Péters FLAMA, Stienstra NA, Grijpma DW, Feijen J, De Groot K, Bezemer JM (2002) Control of vitamin B12 release from poly(ethylene glycol)/poly(butylene terephthalate) multiblock copolymers. Biomaterials 23:1527–1536. https://doi.org/10.1016/S0142-9612(01)00286-1

    Article  Google Scholar 

  83. Deschamps AA, Grijpma DW, Feijen J (2001) Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior. Polymer (Guildf) 42:9335–9345. https://doi.org/10.1016/S0032-3861(01)00453-0

    Article  CAS  Google Scholar 

  84. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068. https://doi.org/10.1021/ma00064a011

    Article  CAS  Google Scholar 

  85. Akiyoshi K, Deguchi S, Tajima H, Nishikawa T, Sunamoto J (1997) Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide. Macromolecules 30:857–861. https://doi.org/10.1021/ma960786e

    Article  CAS  Google Scholar 

  86. Akiyoshi K, Taniguchi I, Fukui H, Sunamoto J (1996) Hydrogel nanoparticle formed by self-assembly of hydrophobized polysaccharide. Stabilization of adriamycin by complexation. Eur J Pharm Biopharm 42:286–290

    CAS  Google Scholar 

  87. Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Wan Kim S, Sunamoto J (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–320. https://doi.org/10.1016/S0168-3659(98)00017-0

    Article  CAS  Google Scholar 

  88. Taniguchi I, Akiyoshi K, Sunamoto J (1999) Self-aggregate nanoparticles of cholesteryl and galactoside groups-substituted pullulan and their specific binding to galactose specific lectin, RCA120. Macromol Chem Phys 200:1554–1560. https://doi.org/10.1002/(SICI)1521-3935(19990601)200:6%3c1554::AID-MACP1554%3e3.0.CO;2-V

    Article  CAS  Google Scholar 

  89. Akiyoshi K, Kang EC, Kurumada S, Sunamoto J, Principi T, Winnik FM (2000) Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly(N-isopropylacrylamides). Macromolecules 33:3244–3249. https://doi.org/10.1021/ma991798d

    Article  CAS  Google Scholar 

  90. Molinaro G, Leroux JC, Damas J, Adam A (2002) Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 23:2717–2722. https://doi.org/10.1016/S0142-9612(02)00004-2

    Article  CAS  Google Scholar 

  91. Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY (2005) Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release 103:235–243. https://doi.org/10.1016/j.jconrel.2004.11.033

    Article  CAS  Google Scholar 

  92. Uchegbu IF, Schätzlein AG, Tetley L, Gray AI, Sludden J, Siddique S, Mosha E (1998) Polymeric chitosan-based vesicles for drug delivery. J Pharm Pharmacol 50:453–458. https://doi.org/10.1111/j.2042-7158.1998.tb06185.x

    Article  CAS  Google Scholar 

  93. Sludden J, Uchegbu IF, Schätzlein AG (2000) The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution. J Pharm Pharmacol 52:377–382. https://doi.org/10.1211/0022357001774110

    Article  CAS  Google Scholar 

  94. Noble L, Gray AI, Sadiq L, Uchegbu IF (1999) A non-covalently cross-linked chitosan based hydrogel. Int J Pharm 192:173–182. https://doi.org/10.1016/S0378-5173(99)00306-3

    Article  CAS  Google Scholar 

  95. Qu X, Wirsén A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer (Guildf) 41:4589–4598. https://doi.org/10.1016/S0032-3861(99)00685-0

    Article  CAS  Google Scholar 

  96. Yazdani-Pedram M, Retuert J, Quijada R (2000) Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol Chem Phys 201:923–930. https://doi.org/10.1002/1521-3935(20000601)201:9%3c923::AID-MACP923%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  97. Kim SY, Cho SM, Lee YM, Kim SJ (2000) Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78:1381–1391. https://doi.org/10.1002/1097-4628(20001114)78:7%3c1381::AID-APP90%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  98. Matyjaszewski K, Beers KL, Kern A, Gaynor SG (1998) Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomer method. J Polym Sci Part A Polym Chem 36:823–830. https://doi.org/10.1002/(SICI)1099-0518(19980415)36:5%3c823::AID-POLA15%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  99. Ming W, Zhao Y, Cui J, Fu S, Jones FN (1999) Formation of irreversible nearly transparent physical polymeric hydrogels during a modified microemulsion polymerization. Macromolecules 32:528–530. https://doi.org/10.1021/ma9813486

    Article  CAS  Google Scholar 

  100. Eagland D, Crowther NJ, Butler CJ (1994) Complexation between polyoxyethylene and polymethacrylic acid—the importance of the molar mass of polyoxyethylene. Eur Polym J 30:767–773. https://doi.org/10.1016/0014-3057(94)90003-5

    Article  CAS  Google Scholar 

  101. Bell CL, Peppas NA (1996) Modulation of drug permeation through interpolymer complexed hydrogels for drug delivery applications. J Control Release 39:201–207. https://doi.org/10.1016/0168-3659(95)00154-9

    Article  CAS  Google Scholar 

  102. Mathur AM, Hammonds KF, Klier J, Scranton AB (1998) Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels. Effect of swelling medium and synthesis conditions. J Control Release 54:177–184. https://doi.org/10.1016/S0168-3659(97)00186-7

    Article  CAS  Google Scholar 

  103. Nagahara S, Matsuda T (1996) Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym Gels Netw 4:111–127. https://doi.org/10.1016/0966-7822(96)00001-9

    Article  CAS  Google Scholar 

  104. Xue S, Wu Y, Guo M, Liu D, Zhang T, Lei W (2018) Fabrication of poly(acrylic acid)/boron nitride composite hydrogels with excellent mechanical properties and rapid self-healing through hierarchically physical interactions. Nanoscale Res Lett 13:393. https://doi.org/10.1186/s11671-018-2800-2

    Article  CAS  Google Scholar 

  105. Bavaresco VP, Zavaglia CAC, Reis MC, Gomes JR (2008) Study on the tribological properties of pHEMA hydrogels for use in artificial articular cartilage. Wear 265:269–277. https://doi.org/10.1016/j.wear.2007.10.009

    Article  CAS  Google Scholar 

  106. Giammona G, Pitarresi G, Cavallaro G, Spadaro G (1999) New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J Biomater Sci Polym Ed 10:969–987. https://doi.org/10.1163/156856299X00568

    Article  CAS  Google Scholar 

  107. Çiçek H, Tuncel A (1998) Immobilization of α-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylmethacrylate copolymer gel. J Polym Sci Part A Polym Chem 36:543–552. https://doi.org/10.1002/(SICI)1099-0518(199803)36:4%3c543::AID-POLA4%3e3.0.CO;2-Q

    Article  Google Scholar 

  108. Jin Y, Yamanaka J, Sato S, Miyata I, Yomota C, Yonese M (2001) Recyclable characteristics of hyaluronate-polyhydroxyethyl acrylate blend hydrogel for controlled releases. J Control Release 73:173–181. https://doi.org/10.1016/S0168-3659(01)00234-6

    Article  CAS  Google Scholar 

  109. Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117. https://doi.org/10.1038/185117a0

    Article  Google Scholar 

  110. Franssen O, Van Ooijen RD, De Boer D, Maes RAA, Herron JN, Hennink WE (1997) Enzymatic degradation of methacrylated dextrans. Macromolecules 30:7408–7413. https://doi.org/10.1021/ma970887s

    Article  CAS  Google Scholar 

  111. Stubbe B, Maris B, Van den Mooter G, De Smedt SC, Demeester J (2001) The in vitro evaluation of “azo containing polysaccharide gels” for colon delivery. J Control Release 75:103–114. https://doi.org/10.1016/S0168-3659(01)00367-4

    Article  CAS  Google Scholar 

  112. Ferreira L, Vidal MM, Geraldes CFGC, Gil MH (2000) Preparation and characterization of gels based on sucrose modified with glycidyl methacrylate. Carbohydr Polym 41:15–24. https://doi.org/10.1016/S0144-8617(99)00064-8

    Article  CAS  Google Scholar 

  113. Hennink WE, Talsma H, Borchert JCH, De Smedt SC, Demeester J (1996) Controlled release of proteins from dextran hydrogels. J Control Release 39:47–55. https://doi.org/10.1016/0168-3659(95)00132-8

    Article  CAS  Google Scholar 

  114. Van Dijk-Wolthuis WNE, Van Steenbergen MJ, Underberg WJM, Hennink WE (1997) Degradation kinetics of methacrylated dextrans in aqueous solution. J Pharm Sci 86:413–417. https://doi.org/10.1021/js9604220

    Article  Google Scholar 

  115. Patil NS, Dordick JS, Rethwisch DG (1996) Macroporous poly(sucrose acrylate) hydrogel for controlled release of macromolecules. Biomaterials 17:2343–2350. https://doi.org/10.1016/S0142-9612(96)00089-0

    Article  CAS  Google Scholar 

  116. Martin BD, Linhardt RJ, Dordick JS (1998) Highly swelling hydrogels from ordered galactose-based polyacrylates. Biomaterials 19:69–76. https://doi.org/10.1016/S0142-9612(97)00184-1

    Article  CAS  Google Scholar 

  117. Patil NS, Li Y, Rethwisch DG, Dordick JS (1997) Sucrose diacrylate: a unique chemically and biologically degradable crosslinker for polymeric hydrogels. J Polym Sci Part A Polym Chem 35:2221–2229. https://doi.org/10.1002/(SICI)1099-0518(199708)35:11%3c2221::AID-POLA12%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  118. Kim SH, Chu CC (2000) Synthesis and characterization of dextran-methacrylate hydrogels and structural study by SEM. J Biomed Mater Res 49:517–527. https://doi.org/10.1002/(SICI)1097-4636(20000315)49:4%3c517::AID-JBM10%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  119. Marsano E, Gagliardi S, Ghioni F, Bianchi E (2000) Behaviour of gels based on (hydroxypropyl) cellulose methacrylate. Polymer (Guildf) 41:7691–7698. https://doi.org/10.1016/S0032-3861(00)00142-7

    Article  CAS  Google Scholar 

  120. Lo CW, Jiang H (2010) Photopatterning and degradation study of dextran-glycidyl methacrylate hydrogels. Polym Eng Sci 50:232–239. https://doi.org/10.1002/pen.21531

    Article  CAS  Google Scholar 

  121. McDowall DJ, Gupta BS, Stannett VT (1984) Grafting of vinyl monomers to cellulose by ceric ion initiation. Prog Polym Sci 10:1–50. https://doi.org/10.1016/0079-6700(84)90005-4

    Article  CAS  Google Scholar 

  122. Lagos A, Yazdani-Pedram M, Reyes J, Campos N (1992) Ceric ion-initiated grafting of poly (methyl acrylate) onto chitin. J Macromol Sci Part A 29:1007–1015. https://doi.org/10.1080/10601329208054137

    Article  Google Scholar 

  123. Gaborieau M, De Bruyn H, Mange S, Castignolles P, Brockmeyer A, Gilbert RG (2009) Synthesis and characterization of synthetic polymer colloids colloidally stabilized by cationized starch oligomers. J Polym Sci Part A Polym Chem 47:1836–1852. https://doi.org/10.1002/pola.23287

    Article  CAS  Google Scholar 

  124. Singh DK, Ray AR (1994) Graft copolymerization of 2-hydroxyethylmethacrylate onto chitosan films and their blood compatibility. J Appl Polym Sci 53:1115–1121. https://doi.org/10.1002/app.1994.070530814

    Article  CAS  Google Scholar 

  125. Lagos A, Reyes J (1988) Grafting onto chitosan. I. Graft copolymerization of methyl methacrylate onto chitosan with Fenton’s reagent (Fe2+−H2O2) as a redox initiator. J Polym Sci Part A Polym Chem 26:985–991. https://doi.org/10.1002/pola.1988.080260403

    Article  CAS  Google Scholar 

  126. Matyjaszewski K, Shipp DA, Wang JL, Grimaud T, Patten TE (1998) Utilizing halide exchange to improve control of atom transfer radical polymerization. Macromolecules 31:6836–6840. https://doi.org/10.1021/ma980476r

    Article  CAS  Google Scholar 

  127. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30:6702–6707. https://doi.org/10.1016/j.biomaterials.2009.08.055

    Article  CAS  Google Scholar 

  128. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

    Article  CAS  Google Scholar 

  129. Benton JA, DeForest CA, Vivekanandan V, Anseth KS (2009) Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng Part A 15:3221–3230. https://doi.org/10.1089/ten.tea.2008.0545

    Article  CAS  Google Scholar 

  130. Paul A, Manoharan V, Krafft D, Assmann A, Uquillas JA, Shin SR, Hasan A, Hussain MA, Memic A, Gaharwar AK (2016) Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. J Mater Chem B 4:3544–3554

    Article  CAS  Google Scholar 

  131. Shin H, Olsen BD, Khademhosseini A (2012) The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33:3143–3152. https://doi.org/10.1016/j.biomaterials.2011.12.050

    Article  CAS  Google Scholar 

  132. Chou AI, Akintoye SO, Nicoll SB (2009) Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthr Cartil 17:1377–1384. https://doi.org/10.1016/j.joca.2009.04.012

    Article  CAS  Google Scholar 

  133. Bryant SJ, Durand KL, Anseth KS (2003) Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production. J Biomed Mater Res Part A 67:1430–1436. https://doi.org/10.1002/jbm.a.20003

    Article  CAS  Google Scholar 

  134. Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melchels FPW, Khademhosseini A, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11:727. https://doi.org/10.1038/nprot.2016.037

    Article  CAS  Google Scholar 

  135. Matyjaszewski K, Wang JL, Grimaud T, Shipp DA (1998) Controlled/“living” atom transfer radical polymerization of methyl methacrylate using various initiation systems. Macromolecules 31:1527–1534. https://doi.org/10.1021/ma971298p

    Article  Google Scholar 

  136. Matyjaszewski K, Hongchen D, Jakubowski W, Pietrasik J, Kusumo A (2007) Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531. https://doi.org/10.1021/la063402e

    Article  CAS  Google Scholar 

  137. Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1:965–977. https://doi.org/10.1039/c0py00010h

    Article  CAS  Google Scholar 

  138. Draye JP, Delaey B, Van De Voorde A, Van Den Bulcke A, Bogdanov B, Schacht E (1998) In vitro release characteristics of bioactive molecules from dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:99–107. https://doi.org/10.1016/S0142-9612(97)00164-6

    Article  Google Scholar 

  139. Draye JP, Delaey B, Van De Voorde A, Van Den Bulcke A, De Reu B, Schacht E (1998) In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687. https://doi.org/10.1016/S0142-9612(98)00049-0

    Article  CAS  Google Scholar 

  140. Lee KY, Bouhadir KH, Mooney DJ (2000) Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules 33:97–101. https://doi.org/10.1021/ma991286z

    Article  CAS  Google Scholar 

  141. Bouhadir KH, Kruger GM, Lee KY, Mooney DJ (2000) Sustained and controlled release of daunomycin from cross-linked poly(aldehyde guluronate) hydrogels. J Pharm Sci 89:910–919. https://doi.org/10.1002/1520-6017(200007)89:7%3c910::AID-JPS8%3e3.0.CO;2-#

    Article  CAS  Google Scholar 

  142. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184. https://doi.org/10.1016/S0168-3659(00)00300-X

    Article  CAS  Google Scholar 

  143. Wang H, Zhu D, Paul A, Cai L, Enejder A, Yang F, Heilshorn SC (2017) Covalently adaptable elastin-like protein-hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv Funct Mater 27:1605609. https://doi.org/10.1002/adfm.201605609

    Article  CAS  Google Scholar 

  144. Simonsen L, Hovgaard L, Mortensen PB, Brøndsted H (1995) Dextran hydrogels for colon-specific drug delivery. V. Degradation in human intestinal incubation models. Eur J Pharm Sci 3:329–337. https://doi.org/10.1016/0928-0987(95)00023-6

    Article  CAS  Google Scholar 

  145. Gehrke SH, Uhden LH, McBride JF (1998) Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J Control Release 55:21–33. https://doi.org/10.1016/S0168-3659(98)00019-4

    Article  CAS  Google Scholar 

  146. Alhaique F, Murtas E, Carafa M, Desideri P, Dentini M, Coviello T, Riccieri FM, Rambone G (2002) A novel co-crosslinked polysaccharide: studies for a controlled delivery matrix. J Control Release 55:57–66. https://doi.org/10.1016/s0168-3659(98)00028-5

    Article  Google Scholar 

  147. Kuijpers AJ, Van Wachem PB, Van Luyn MJA, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336. https://doi.org/10.1016/S0168-3659(00)00221-2

    Article  CAS  Google Scholar 

  148. Ohan MP, Weadock KS, Dunn MG (2002) Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. J Biomed Mater Res 60:384–391

    Article  CAS  Google Scholar 

  149. Kuijpers AJ, Engbers GHM, Meyvis TKL, De Smedt SSC, Demeester J, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000) Combined gelatin-chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins. Macromolecules 33:3705–3713. https://doi.org/10.1021/ma9917702

    Article  CAS  Google Scholar 

  150. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32:5561–5566. https://doi.org/10.1021/ma990514m

    Article  CAS  Google Scholar 

  151. Ichi T, Watanabe J, Ooya T, Yui N (2001) Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane. Biomacromolecules 2:204–210. https://doi.org/10.1021/bm005617n

    Article  CAS  Google Scholar 

  152. Ooya T, Ichi T, Furubayashi T, Katoh M, Yui N (2007) Cationic hydrogels of PEG crosslinked by a hydrolyzable polyrotaxane for cartilage regeneration. React Funct Polym 67:1408–1417

    Article  CAS  Google Scholar 

  153. Peppas NA, Merrill EW (1977) Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. J Appl Polym Sci 21:1763–1770. https://doi.org/10.1002/app.1977.070210704

    Article  CAS  Google Scholar 

  154. Jabbari E, Nozari S (2000) Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polym J 36:2685–2692. https://doi.org/10.1016/S0014-3057(00)00044-6

    Article  CAS  Google Scholar 

  155. Kofinas P, Athanassiou V, Merrill EW (1996) Hydrogels prepared by electron irradiation of poly(ethylene oxide) in water solution: unexpected dependence of cross-link density and protein diffusion coefficients on initial PEO molecular weight. Biomaterials 17:1547–1550. https://doi.org/10.1016/0142-9612(96)89781-X

    Article  CAS  Google Scholar 

  156. Merrill EW, Dennison KA, Sung C (1993) Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). Biomaterials 14:1117–1126. https://doi.org/10.1016/0142-9612(93)90154-T

    Article  CAS  Google Scholar 

  157. Stringer JL, Peppas NA (1996) Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels. J Control Release 42:195–202. https://doi.org/10.1016/0168-3659(96)01457-5

    Article  CAS  Google Scholar 

  158. Lee J, Macosko CW, Urry DW (2001) Swelling behavior of γ-irradiation cross-linked elastomeric polypentapeptide-based hydrogels. Macromolecules 34:4114–4123. https://doi.org/10.1021/ma0015673

    Article  CAS  Google Scholar 

  159. Moreira Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33:1281–1290. https://doi.org/10.1016/j.biomaterials.2011.10.067

    Article  CAS  Google Scholar 

  160. Tatsukawa H, Kojima S (2010) Recent advances in understanding the roles of transglutaminase 2 in alcoholic steatohepatitis. Cell Biol Int 34:325–334. https://doi.org/10.1042/CBI20090130

    Article  CAS  Google Scholar 

  161. Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug Chem 20:384–389. https://doi.org/10.1021/bc800427n

    Article  CAS  Google Scholar 

  162. McHale MK, Setton LA, Chilkoti A (2005) Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng 11:1768–1779. https://doi.org/10.1089/ten.2005.11.1768

    Article  CAS  Google Scholar 

  163. Cai X, Hu S, Yu B, Cai Y, Yang J, Li F, Zheng Y, Shi X (2018) Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention. Carbohydr Polym 201:201–210. https://doi.org/10.1016/j.carbpol.2018.08.065

    Article  CAS  Google Scholar 

  164. Westhaus E, Messersmith PB (2001) Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels. Biomaterials 22:453–462. https://doi.org/10.1016/S0142-9612(00)00200-3

    Article  CAS  Google Scholar 

  165. Sperinde JJ, Griffith LG (2000) Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules 33:5476–5480. https://doi.org/10.1021/ma000459d

    Article  CAS  Google Scholar 

  166. Yu F, Cao X, Li Y, Zeng L, Yuan B, Chen X (2014) An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry.” Polym Chem 5:1082–1090. https://doi.org/10.1039/c3py00869j

    Article  CAS  Google Scholar 

  167. Partlow BP, Applegate MB, Omenetto FG, Kaplan DL (2016) Dityrosine cross-linking in designing biomaterials. ACS Biomater Sci Eng 2:2108–2121. https://doi.org/10.1021/acsbiomaterials.6b00454

    Article  CAS  Google Scholar 

  168. Raia NR, Partlow BP, McGill M, Kimmerling EP, Ghezzi CE, Kaplan DL (2017) Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131:58–67. https://doi.org/10.1016/j.biomaterials.2017.03.046

    Article  CAS  Google Scholar 

  169. Yang G, Xiao Z, Long H, Ma K, Zhang J, Ren X, Zhang J (2018) Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep 8:1616 (1–13). https://doi.org/10.1038/s41598-018-20006-y

  170. Valero C, Amaveda H, Mora M, García-Aznar JM (2018) Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS One 13:e0195820 (1–16). https://doi.org/10.1371/journal.pone.0195820

  171. Ren K, Cui H, Xu Q, He C, Li G, Chen X (2016) Injectable polypeptide hydrogels with tunable microenvironment for 3D spreading and chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells. Biomacromolecules 17:3862–3871. https://doi.org/10.1021/acs.biomac.6b00884

    Article  CAS  Google Scholar 

  172. Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2:1500122 (1–18). https://doi.org/10.1002/advs.201500122

  173. Cheng Y-H, Chen Y-C, Yang S-H, Yang K-C, Wu S-C, Su W-Y, Cheng WT-K, Lin F-H (2010) Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus. Tissue Eng Part A 16:695–703

    Article  CAS  Google Scholar 

  174. Ghasemi Tahrir F, Ganji F, Mani AR, Khodaverdi E (2016) In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin. Drug Deliv 23:1038–1046. https://doi.org/10.3109/10717544.2014.932861

    Article  CAS  Google Scholar 

  175. Duarte BPM, Moura MJ, Gil MH, Figueiredo MM (2017) Modeling the drug release from ionic and covalent co-cross-linked chitosan hydrogels. Comput Aided Chem Eng 40:1021–1026. https://doi.org/10.1016/B978-0-444-63965-3.50172-0

    Article  CAS  Google Scholar 

  176. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R (2018) Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 198:385–400. https://doi.org/10.1016/j.carbpol.2018.06.086

    Article  CAS  Google Scholar 

  177. Ahmadi R, De Bruijn JD (2008) Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. J Biomed Mater Res Part A 86:824–832. https://doi.org/10.1002/jbm.a.31676

    Article  CAS  Google Scholar 

  178. Martins EAN, Baccarin RYA, Moraes APL, Mantovani CF, Machado TSL, Hagen SCF (2015) Evaluation of chitosan-glycerol phosphate in experimental osteochondral joint defects in horses. J Mol Genet Med s4:1747–1862. https://doi.org/10.4172/1747-0862.S4-002

  179. Wu LQ, Bentley WE, Payne GF (2011) Biofabrication with biopolymers and enzymes: potential for constructing scaffolds from soft matter. Int J Artif Organs 34:215–224. https://doi.org/10.5301/IJAO.2011.6406

    Article  CAS  Google Scholar 

  180. Yamamoto H, Kuno S, Nagai A, Nishida A, Yamauchi S, Ikeda K (1990) Insolubilizing and adhesive studies of water-soluble synthetic model proteins. Int J Biol Macromol 12:305–310. https://doi.org/10.1016/0141-8130(90)90019-7

    Article  CAS  Google Scholar 

  181. Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841. https://doi.org/10.1016/S0142-9612(03)00096-6

    Article  CAS  Google Scholar 

  182. Le Thi P, Lee Y, Nguyen DH, Park KD (2017) In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J Mater Chem B 5:757–764. https://doi.org/10.1039/c6tb02179d

    Article  Google Scholar 

  183. Han B, Jaurequi J, Tang BW, Nimni ME (2003) Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res Part A 65:118–124. https://doi.org/10.1002/jbm.a.10460

    Article  CAS  Google Scholar 

  184. Butler MF, Ng YF, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci Part A Polym Chem 41:3941–3953. https://doi.org/10.1002/pola.10960

    Article  CAS  Google Scholar 

  185. Moura MJ, Figueiredo MM, Gil MH (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 8:3823–3829. https://doi.org/10.1021/bm700762w

    Article  CAS  Google Scholar 

  186. Liu BS (2008) Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair. J Biomed Mater Res Part A 87:1092–1102. https://doi.org/10.1002/jbm.a.31916

    Article  CAS  Google Scholar 

  187. Huang CH, Chi CY, Chen YS, Chen KY, Chen PL, Yao CH (2012) Evaluation of proanthocyanidin-crosslinked electrospun gelatin nanofibers for drug delivering system. Mater Sci Eng C 32:2476–2483. https://doi.org/10.1016/j.msec.2012.07.029

    Article  CAS  Google Scholar 

  188. Chen KY, Shyu PC, Dong GC, Chen YS, Kuo WW, Yao CH (2009) Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite. Biomaterials 30:1682–1688. https://doi.org/10.1016/j.biomaterials.2008.12.024

    Article  CAS  Google Scholar 

  189. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802. https://doi.org/10.2144/04375RV01

    Article  CAS  Google Scholar 

  190. Augustine R (2018) Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Prog Biomater 7:77–92. https://doi.org/10.1007/s40204-018-0087-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was made possible by the NPRP9-144-3-021 grant funded by Qatar National Research Fund (a part of Qatar Foundation). The statements made here are the sole responsibility of authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Augustine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Augustine, R., Alhussain, H., Zahid, A.A., Raza Ur Rehman, S., Ahmed, R., Hasan, A. (2021). Crosslinking Strategies to Develop Hydrogels for Biomedical Applications. In: Jose, J., Thomas, S., Thakur, V.K. (eds) Nano Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7138-1_2

Download citation

Publish with us

Policies and ethics