Skip to main content
Log in

Dielectric dispersion and relaxations in (PMMA/PVDF)/ZnO nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In latest years, the scientific community has shown important interest in nanocomposites as a new generation of materials with elevated dielectric constant and low dielectric loss factor for microelectronics. In this work, the effect of ZnO nanoparticles on PMMA/PVDF blend. Solution-cast technique used to prepare these nanocomposites. FTIR and SEM studies were performed. The effect of ZnO doping on the complex dielectric permittivity, electric modulus properties and ac electrical conductivity of these nanocomposites has been investigated at ambient temperature. Dielectric constant ε′, dielectric loss ε″, and the loss tangent decreased with increasing frequency and increased with increasing temperature. The dielectric constant values were found almost high (∼24) at (100 Hz) and were referred to the presence of interfacial polarization. The existence of loss peak in ε″, tanδ and, M" attributed to α-relaxation existed in the nanocomposites. The temperature-dependent ac conductivity values obeyed Arrhenius behavior. These nanocomposites can be selected for implying capacitors and application of the memory device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

Similar content being viewed by others

References

  1. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications, 1st edn. McGraw-Hill Nanoscience And Technology Series. ISBN-13: 978-0071458214

  2. El-Bashir S (2013) Thermal and mechanical properties of plywood sheets based on polystyrene/silica nanocomposites and palm tree fibers. Polym Bull 70(7):2035–2045

    Article  CAS  Google Scholar 

  3. El-Bashir S, Hendi A (2009) A decorative construction material prepared by making use of marble waste granules and PMMA/SiO2 nanocomposites. Polym Plast Technol Eng 49:78–82

    Article  Google Scholar 

  4. El-Bashir S (2012) Photophysical properties of fluorescent PMMA/SiO2 nanohybrids for solar energy applications. J Luminescence 132:1786–1791

    Article  CAS  Google Scholar 

  5. El-Bashir SM, Binhussain MA, Al-Thumairi NA, AlZayed N (2014) Preparation and characterization of PMMA/stone waste nanocomposites for marmoreal artificial stone industry. J Reinf Plast Compos 33(4):350–357

    Article  Google Scholar 

  6. Manson JA (2012) Polymer blends and composites. Springer, New york

    Google Scholar 

  7. El-Bashir SM, Alwadai NM, AlZayed N (2018) AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films. J Mol Struct 1154:239–247

    Article  CAS  Google Scholar 

  8. Kang SJ, Park YJ, Bae I, Kim KJ, Kim HC, Bauer S, Thomas EL, Park C (2009) Printable ferroelectric pvdf/pmma blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv Funct Mater 19:2812–2818

    Article  CAS  Google Scholar 

  9. Lu B, Lamnawar K, Maazouz A, Zhang H (2016) Revealing the dynamic heterogeneity of PMMA/PVDF blends: from microscopic dynamics to macroscopic properties. Soft Matter 12:3252–3264

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, Wu N, Cao Q, Jing B, Wang X, Wang Q, Kuang H (2013) A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ionics 249–250:93–97

    Article  Google Scholar 

  11. Reddy MO, Reddy LR (2013) Structural, dielectric, optical and magnetic properties of Ti3+, Cr3+, and Fe3+:PVDF polymer films. J Polym 2013:10

    Google Scholar 

  12. Yousefi AA (2011) Influence of polymer blending on crystalline structure of polyvinylidene fluoride. Iranian Polym J 20(2):109–121

    CAS  Google Scholar 

  13. Han S, Huang W, Shi W, Yu J (2014) Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer. Sensors Actuators B 203:9–16

    Article  CAS  Google Scholar 

  14. Japic D, Marinsek M, Orel ZC (2016) Effect of ZnO on the thermal degradation behavior of poly(methyl methacrylate)nanocomposites. Acta Chim Slov 63:535–543

    Article  CAS  PubMed  Google Scholar 

  15. Shanshool HM, Yahaya M, Yunus WMM, Abdullah IY (2016) Third order nonlinearity of PMMA/ZnO nanocomposites as foils. Opt Quant Electron 48:7

    Article  Google Scholar 

  16. Shanshool HM, Yahaya M, Yunusb WMM, Abdullah IY (2015) Optical properties of pvdf/zno nanocomposites. Int J Tech Res Appl 23:51–58

    Google Scholar 

  17. Mohammed MI (2018) Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend. J Mol Struct 1169:9–17

    Article  CAS  Google Scholar 

  18. Elashmawi IS, Gaabour LH (2015) Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys 5:105–110

    Article  Google Scholar 

  19. Ma W, Zhang J, Wang X, Wang S (2007) Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions. Appl Surf Sci 253:8377–8388

    Article  CAS  Google Scholar 

  20. Kitture R, Pawar D, Rao ChN, Choubey RK, Kale SN (2017) Nanocomposite modified optical fiber: a room temperature, selective H2S gas sensor: Studies using ZnO-PMMA. J Alloy Compd 695:2091–2096

    Article  CAS  Google Scholar 

  21. Agarwal S, Kulshrestha V, Saraswat VK (2019) Study of optical constants of ZnO dispersed PC/PMMA blend nanocomposites. Open Phys J 5. ISSN: 1874-8430

  22. Balen R, da Costa WV, de Lara AJ, Piai JF, Muniz EC, Companhoni MV, Nakamura TU, Lima SM et al (2016) Polymer nanocomposites comprising PMMA matrix and ZnO, SnO2, and TiO2 nanofillers: a comparative study of structural, optical, and dielectric properties for multifunctional technological applications. Appl Surf Sci 385(2016):257–267

    Article  CAS  Google Scholar 

  23. Choudhary S, Sengwa RJ (2016) Anomalous behavior of the dielectric and electrical properties of polymeric nanodielectricpoly(vinyl alcohol)–titanium dioxide films. J Appl Polym Sci 133:4568

    Google Scholar 

  24. Choudhary S (2017) Structural and dielectric properties of (PEO–PMMA)–SnO2 nanocomposites. Compos Commun 5:54–63

    Article  Google Scholar 

  25. Parthibavarman M, Vallalperuman K, Sathishkumar S, Durairaj M, Thavamani K (2014) J Mater Sci: Mater Electron 25:730–735

    CAS  Google Scholar 

  26. Mansour ShA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23(5):85

    Article  Google Scholar 

  27. Sugumaran S, Bellan CS, Muthu D, Raja S, Bheeman D, Rajamani R (2015) Characterization ofcomposite PVA–Al2O3 thin films prepared by dip coating method. Iran Polym J 24(1):63–74

    Article  CAS  Google Scholar 

  28. Sengwa RJ, Choudhary S (2017) Dielectric and electrical properties of PEO–Al2O3 nanocomposites. J Alloy Compd 701:652–659

    Article  CAS  Google Scholar 

  29. Choudhary S (2017) Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Physica B 522:48–56

    Article  CAS  Google Scholar 

  30. Bhunia R, Ghosh B, Ghosh D, Hussain S, Bhar R, Pal AK (2015) Free-standing and flexible nano-ZnO/PVDF composite thin films: impedance spectroscopic studies. Polym Adv Technol 26:1176–1183

    Article  CAS  Google Scholar 

  31. Khutia M, Joshi GM (2015) Dielectric relaxation of PVC/PMMA/NiO blends as a function of DC bias. J Mater Sci Mater Electron 26:5475–5488

    Article  CAS  Google Scholar 

  32. Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2017) Analysis of the dielectric relaxation and ac conductivity behavior ofpolyvinyl alcohol-cadmium selenide nanocomposite films. Polym Compos. 38:287–298

    Article  CAS  Google Scholar 

  33. Bouropoulos N, Psarras GC, Moustakas N, Chrissanthopoulos A, Baskoutas S (2008) Optical and dielectric properties of ZnO-PVA nanocomposites. Phys Status Solidi A. 205:2033–2037

    Article  CAS  Google Scholar 

  34. Choudhary S, Sengwa RJ (2015) Dielectric dispersion and relaxation studies of melt compounded poly(ethylene oxide)/silicon dioxide nanocomposites. Polym Bull 72:2591–2604

    Article  CAS  Google Scholar 

  35. Mohammed MI, Fouad SS, Mehta N (2018) Correction to: Dielectric relaxation andthermally activated a.c. conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers. J Mater Sci Mater Electron 29:18271–18281

    Article  CAS  Google Scholar 

  36. Yahia IS, Mohammed MI (2018) Facile synthesis of graphene oxide/PVAnanocomposites for laser optical limiting: band gap analysis and dielectric constants. J Mater Sci Mater Electron 29:8555–8563

    Article  CAS  Google Scholar 

  37. Elashmawi IS, Abdelrazek EM, Hezma AM, Rajeh A (2014) Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys B 434:57–63

    Article  CAS  Google Scholar 

  38. Polu AR, Kumar R (2013) Effect of zinc salt on transport, structural, and thermal properties of PEG-based polymer electrolytes for battery application. Adv Mat Lett 4:543–550

    Google Scholar 

  39. Ragab HM (2017) Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of Cesium Chloride. Results Phys 7:2057–2065

    Article  Google Scholar 

  40. Psarras GC, Gatos KG, Karahaliou PK, Georga SN, Krontiras CA, Karger-Kocsis J (2007) Electrical relaxation dynamics in TiO2-polymer matrix composites. Express Polym Lett 1:837–845

    Article  CAS  Google Scholar 

  41. Dhatarwal P, Sengwa RJ (2020) Enhanced dielectric properties of the ZnO and TiO2 nanoparticles dispersed poly (Vinyl Pyrrolidone) matrix-based nanocomposites. J Macromol Sci Part B 59:853–866

    Article  CAS  Google Scholar 

  42. Lanje AS, Sharma SJ, Ningthoujam RS, Ahn JS, Pode RB (2013) Low-temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powder Technol 24:331–335

    Article  CAS  Google Scholar 

  43. Choudhary S, Sengwa RJ (2017) Morphological, structural, dielectric and electrical properties of PEO–ZnO nanodielectric films. J Polym Res. 24:54

    Article  Google Scholar 

  44. Sengwa RJ, Choudhary S (2016) Dielectric dispersion and relaxation in polymer blend based nanodielectric film. Macromol Symp 362(1):132–138

    Article  CAS  Google Scholar 

  45. Shanmugam1 G, and Krishnakumar V (2017) Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films.. Indian J Phys. 1–9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.I. Dielectric dispersion and relaxations in (PMMA/PVDF)/ZnO nanocomposites. Polym. Bull. 79, 2443–2459 (2022). https://doi.org/10.1007/s00289-021-03606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03606-z

Keywords

Navigation