Skip to main content
Log in

Facile synthesis of graphene oxide/PVA nanocomposites for laser optical limiting: band gap analysis and dielectric constants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Casting technique was used to prepare nanocomposites of polyvinyl alcohol (PVA) and graphene oxide (GO). GO has been set up by Hummer’s method and characterized by SEM and X-ray spectroscopy. Samples have been designed to contain a different weight percent of GO as follows: (0.370, 0.926, 1.852, 2.778, 3.704, 9.259 wt%) inside PVA matrix under the homogenous ultrasonic system to have a highly dispersed GO in PVA matrix. The nanocomposites were described and analyzed by utilizing different methods such as UV–Vis–NIR, dielectric studies at room temperature and optical limiting properties. It is shown that the influence of the nanofiller leads to the increase in the absorption values while diminishing the optical band gap of both direct and indirect transition. The dielectric constant (ε′) and the dielectric loss (ε″) were studied within the frequency range from 3 kHz to 10 MHz and were found to be depending on the GO contents. The conduction mechanism for the studied samples can be described by the correlated barrier hopping. PVA/GO nanocomposites showed good optical limiting properties. The synthesized GO-doped PAV can be used in electronic and optoelectronic applications especially in battery electrolyte and dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Hayashi, T. Okamoto, J. Phys. D 45, 433001 (2012)

    Google Scholar 

  2. F. Lordan, J.H. Rice, B. Jose, R.J. Forster, T.E. Keyes, J. Phys. Chem. C 116, 1784–1788 (2012)

    CAS  Google Scholar 

  3. N.C. Carville, M. Manzo, S. Damm, M. Castiella, L. Collins, D. Denning, S.A.L. Weber, K. Gallo, J.H. Rice, B.J. Rodriguez, ACS Nano 6, 7373–7380 (2012)

    CAS  Google Scholar 

  4. X. Ren, H. Fan, C. Wang, N. Zhao, Nano Energy 35, 233–241 (2017)

    CAS  Google Scholar 

  5. E. Kennedy, R. Al-Majmaie, M. Al-Rubeai, D. Zerulla, J.H. Rice, RSC Adv. 3, 13789–13795 (2013)

    CAS  Google Scholar 

  6. F. Yarrow, E. Kennedy, F. Salaun, J.H. Rice, Biomed. Opt. Express 2, 37–43 (2011)

    CAS  Google Scholar 

  7. Y.Q. Li, T.Y. Yang, T. Yu, L.X. Zheng, K. Liao, J. Mater. Chem. 22, 25481–25491 (2012)

    Google Scholar 

  8. L. Zhang, Z.P. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, High strengthgraphene oxide polyvinyl alcohol composite hydrogels. J. Mater. Chem. 21, 10399–10407 (2011)

    CAS  Google Scholar 

  9. Y. Zhu, H. Wang, J. Zhu, L. Chang, L. Ye, Appl. Surf. Sci. 349, 27–34 (2015)

    CAS  Google Scholar 

  10. C. Bao, Y.Q. Guo, L. Song, Y. Hu, J. Mater. Chem. 21, 13942–13951 (2011)

    CAS  Google Scholar 

  11. B. Shen, W. Zhai, C. Chen, D. Lu, J. Wang, W. Zheng, ACS Appl. Mater. Interfaces 3, 3103–3109 (2011)

    CAS  Google Scholar 

  12. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. 16, 155–158 (2006)

    CAS  Google Scholar 

  13. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666–686 (2012)

    CAS  Google Scholar 

  14. H.J. Salavagione, M.A. Gómez, G. Martínez, Macromolecules 42, 6331–6334 (2009)

    CAS  Google Scholar 

  15. Z. Liu, J.T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 130, 10876–10877 (2008)

    CAS  Google Scholar 

  16. S. Na, F. Huiqing, T. Hailin, Appl. Surf. Sci. 353, 580–587 (2015)

    Google Scholar 

  17. A. Kundu, K.R. Layek, A. Kuila, A.K. Nandi, ACS Appl. Mater. Interfaces 4, 5576–5582 (2012)

    CAS  Google Scholar 

  18. P. Li, H. Fan, Y. Cai, Sens. Actuators B 185, 110–116 (2013)

    CAS  Google Scholar 

  19. H. Tian, H. Fan, M. Li, L. Ma, ACS Sens. 1(3), 243–250 (2016)

    CAS  Google Scholar 

  20. K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354–74366 (2016)

    CAS  Google Scholar 

  21. O.G.H. Abdullah, S.A. Saleem, J. Electron. Mater. 45, 5910–5920 (2016)

    CAS  Google Scholar 

  22. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, J. Naikand, D.J. Madhu Kumar, RSC Adv. 6, 77977–77986 (2016)

    CAS  Google Scholar 

  23. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 19, 2297–2302 (2009)

    CAS  Google Scholar 

  24. I. Tantis, G.C. Psarras, D. Tasis, Express Polym. Lett. 6, 283–292 (2012)

    CAS  Google Scholar 

  25. N. Wang, S. Ji, J. Li, R. Zhang, G. Zhang, J. Membr. Sci. 455, 113–120 (2014)

    CAS  Google Scholar 

  26. H. Feng, Y. Li, J. Li, RSC Adv. 2, 6988–6993 (2012)

    CAS  Google Scholar 

  27. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350–1375 (2010)

    CAS  Google Scholar 

  28. L. Shahriary, A.A. Thawale, Int. J. Renew. Energy Environ. Eng. 2(01), 58–63 (2014)

    Google Scholar 

  29. S. Morimune, T. Nishino, T. Goto, Polym. J. 44, 1056–1063 (2012)

    CAS  Google Scholar 

  30. K. Hemalatha, H. Somashekarappa, R. Somashekar, Adv. Mater. Phys. Chem. 5, 408–418 (2015)

    CAS  Google Scholar 

  31. H.M. Zidan, M. Abu-Elnader, Phys. B 355, 308–317 (2005)

    CAS  Google Scholar 

  32. E. Erdoğan, B. Gündüz, Opt. Laser Technol. 91, 130–137 (2017)

    Google Scholar 

  33. K. Deshmukh, B. Ahamed, K. Pash, RSC Adv. 5, 61933–61945 (2015)

    CAS  Google Scholar 

  34. K. Majdi, K. Zeedan, H. Attar, Iraqi J. Polym. 1, 155–162 (1997)

    Google Scholar 

  35. A. Kurt, Turk. J. Chem. 34, 67–79 (2010)

    CAS  Google Scholar 

  36. K. Kadhim, I. Agool, A. Hashim, Adv. Environ. Biol. 10(1), 81–87 (2016)

    CAS  Google Scholar 

  37. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, J. Mater. Sci.: Mater. Electron. 15, 3457–3463 (2015)

    Google Scholar 

  38. K.R. Nemade, S.A. Waghuley, Int. J. Met. 2014, 4 (2014)

    Google Scholar 

  39. S.B. Aziz, H.M. Ahmed, A.M. Hussein, A.B. Fathulla, R.M. Wsw, R.T. Hussein, J. Mater. Sci.: Mater. Electron. 27, 12112–12118 (2016)

    Google Scholar 

  40. S. Kramadhati, K. Thyagarajan, J. Eng. Res. Dev. 6, ,15–18 (2013)

    Google Scholar 

  41. K. Deshmukh, G.M. Joshi, RSC Adv. 4, 37954–37963 (2014)

    CAS  Google Scholar 

  42. E.M. Abdul Razek, A.M. Abdugany, A.H. Oraby, G.M. Asnag, J. Eng. Technol. 12, 98–102 (2012)

    Google Scholar 

  43. S. Dutta, B.N. Ganguly, J. Nanobiotechnol. 29, 10–29 (2012)

    Google Scholar 

  44. A.F. Mansour, S.F. Mansour, M.A. Abdo, J. Appl. Phys. 7, 60–69 (2015)

    Google Scholar 

  45. G.C. Psarras, Compos. Part A 37, 1545–1553 (2006)

    Google Scholar 

  46. S. Mitra, O. Mondal, D.R. Saha, A. Datta, S. Banerjee, D. Chakravorty, J. Phys. Chem. 115, 14285–14289 (2011)

    CAS  Google Scholar 

  47. G.C. Psarras, A. Soto Beobide, G.A. Voyiatzis, P.K. Karahaliou, S.N. Georga, C.A. Krontiras, J. Sotiropoulos, J. Polym. Sci. 44, 3078–3092 (2006)

    CAS  Google Scholar 

  48. F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G.B. Appetecchi, B. Scrosati, Electrochim. Acta 39, 2187–2194 (1994)

    CAS  Google Scholar 

  49. H.M. Ragab, Phys. B 406, 3759–3767 (2011)

    CAS  Google Scholar 

  50. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari, T. Sheela, J. Naik, AIP Conf. Proc. 1591, 1769, (2014)

    CAS  Google Scholar 

  51. D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.-H. Hu, ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)

    CAS  Google Scholar 

  52. Z. Liu, X. Zhang, X. Yan, Y. Chen, J. Tian, Chin. Sci. Bull. 57, 2971–2982 (2012)

    CAS  Google Scholar 

  53. Y.S. Tamgadge, A.L. Sunatkari, S.S. Talwatkar, V.G. Pahurkar, G.G. Muley, Opt. Mater. 51, 175–184 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P.2/9/38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Yahia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahia, I.S., Mohammed, M.I. Facile synthesis of graphene oxide/PVA nanocomposites for laser optical limiting: band gap analysis and dielectric constants. J Mater Sci: Mater Electron 29, 8555–8563 (2018). https://doi.org/10.1007/s10854-018-8869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8869-7

Navigation