Skip to main content
Log in

Synthesis, spectral, thermal studies and dielectric behavior of functionalized TiO2-loaded diglycidyl epoxy nanocomposite film

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The dielectric and thermal behavior of 4-aminobutyltriethoxysilane-functionalized TiO2 nanoparticle (ABTES-TiO2 NPs)-loaded diglycidyl ether of bisphenol-A (DGEBA-GY260) nanocomposites was chosen for investigation. The synthesized TiO2-ABTES-DGEBA nanocomposite films were distinguished using FT-IR spectra to access the chemical bonding between fillers and epoxy resin. SEM and AFM analysis facilitated access to the homogeneously dispersed nanoparticles in epoxy matrix. Triethylenetetramine (TEPA), also denoted as tetrene, is utilized as a curing agent. TGA and DSC analysis are used to investigate the thermal behavior of epoxy nanocomposite samples. Moreover, thermodynamic parameters were computed using Coats–Redfern method. There is an increase in thermal behavior with an increase in loading concentrations. The dielectric measurements were studied in the frequency range from 50 to 5 × 106 Hz and at temperatures 30, 60 and 120 °C, which exhibited outstanding results. The variation in dielectric constant, dielectric loss and AC conductivity makes ABTES-TiO2-loaded epoxy nanocomposites is the most compatible for high-performance electrical and thermal applications. The highlight of the work is the temperature and frequency that are especially more pronounced in 5%-TiO2-ABTES-DGEBA and 7%-TiO2-ABTES-DGEBA samples. The complete analysis put forward that loading epoxy resins with TiO2-ABTES augment the electrical and thermal properties of epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sasidhar S, Schuman TP, Dogan F (2013) Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5:1917–1927

    Article  Google Scholar 

  2. Li J, Li L, Xiang Y, Zheng S (2016) nanostructured epoxy thermosets containing poly(vinylidene fluoride): preparation, morphologies, and dielectric properties. Ind Eng Chem Res 55:586–596

    Article  CAS  Google Scholar 

  3. Jlassi K, Chandran S, Poothanari MA, Zayani MB, Thomas S, Chehimi MM (2016) Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir. https://doi.org/10.1021/acs.langmuir.5b04457

    Article  PubMed  Google Scholar 

  4. Tanaka T, Montanari GC, Mülhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans Diel Electr Insul 11:763–784

    Article  CAS  Google Scholar 

  5. Duraibabu D, Alagar M, Ananda Kumar S (2014) Studies on mechanical, thermal and dynamic mechanical properties of functionalized nanoalumina reinforced sulphone ether linked tetraglycidyl epoxy nanocomposites. RSC Adv 4:40132–40140

    Article  CAS  Google Scholar 

  6. Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund LA (2002) High performance epoxy-layered silicate nanocomposites. Polym Eng Sci 42:1815–1826

    Article  CAS  Google Scholar 

  7. Kinloch AJ, Shaw SJ, Hunston DL (1983) Microstructure and fracture studies. Polymer 32:1341–1354

    Article  Google Scholar 

  8. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sens Actuators B Chem 188:207–211

    Article  CAS  Google Scholar 

  9. Karunakaran C, Jayabharathi J, Sathishkumar R, Jayamoorthy K (2013) Contrasting emission behaviour of phenanthroimidazole with rutile and anatase TiO2 nanoparticles. J Lumin 138:235–241

    Article  CAS  Google Scholar 

  10. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Benzimidazole derivative vs different phases of TiO2—physico-chemical approach. Spectrochim Acta Part A 114:303–308

    Article  CAS  Google Scholar 

  11. Karunakaran C, Jayabharathi J, Jayamoorthy K, Brindha Devi K (2012) Sensing rutile TiO2 through fluorescence of imidazole derivative. Sens Actuators B Chem 168:263–270

    Article  CAS  Google Scholar 

  12. Saravanan P, Jayamoorthy K, Kumar SA (2016) Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance. J Sci Adv Mater Devices 1(3):367–378

    Article  Google Scholar 

  13. Suresh S, Nisha P, Saravanan P, Jayamoorthy K, Karthikeyan S (2018) Investigation of the thermal and dielectric behavior of epoxy nano-hybrids by using silane modified nano-ZnO. Silicon 10(4):1291–1303

    Article  CAS  Google Scholar 

  14. Suresh S, Karthikeyan S, Jayamoorthy K (2016) Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int J Mod Sci 2(2):69–77

    Article  Google Scholar 

  15. Suresh S, Saravanan P, Jayamoorthy K, Kumar SA, Karthikeyan S (2016) Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater Sci Eng C 64:286–292

    Article  CAS  Google Scholar 

  16. Saravanan P, Jayamoorthy K, Kumar SA (2015) Switch-on fluorescence and photo-induced electron transfer of 3-aminopropyl triethoxysilane to ZnO: dual applications in sensors and antibacterial activity. Sens Actuators B Chem 221:784–791

    Article  CAS  Google Scholar 

  17. Karunakaran C, Jayabharathi J, Jayamoorthy K, Vinayagamoorthy P (2014) Benzimidazole based Ir(III) picolinate complexes as emitting materials and the fluorescent behavior of benzimidazole bound to Mn–TiO @ZnO core/shell nanospheres. Mater Express 4:279–292

    Article  Google Scholar 

  18. Jayabharathi J, Thanikachalam V, Kalaiarasi V, Jayamoorthy K (2014) Enhancing photoluminescent behavior of 2-(naphthalen-1-yl)-1,4,5-triphenyl-1H-imidazole by ZnO and Bi2O3. Spectrochim Acta Part A 118:182–186

    Article  Google Scholar 

  19. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Benzimidazole: dramatic luminescence turn-on by ZnO nanocrystals. Measurement 46:3883–3886

    Article  Google Scholar 

  20. Jayabharathi J, Jayamoorthy K (2013) Sensing nanoparticulate ZnO with benzimidazole derivative by fluorescence. Key Eng Mater 543:64–67

    Google Scholar 

  21. Mir SH, Nagahara LA, Thundat T, Mokarian-Tabari P, Furukawa H, Khosla A (2018) Organic-inorganic hybrid functional materials: An integrated platform for applied technologies. J Electrochem Soc 165(8):B3137–B3156

    Article  CAS  Google Scholar 

  22. Shah S, Shiblee MNI, Mir SH, Nagahara LA, Thundat T, Sekhar PK, Kawakami M, Furukawa H, Khosla A (2018) Hybrid micromolding of silver micro fiber doped electrically conductive elastomeric composite polymer for flexible sensors and electronic devices. Microsyst Technol 24(10):4159–4164

    Article  CAS  Google Scholar 

  23. Shah S, Shiblee MNI, Rahman JMH, Basher S, Mir SH, Kawakami M, Furukawa H, Khosla A (2018) 3D printing of electrically conductive hybrid organic–inorganic composite materials. Microsyst Technol 24(10):4341–4345

    Article  CAS  Google Scholar 

  24. Bashir S, Moosvi SK, Jan T, Rydzek G, Mir SH, Rizvi MA (2020) Development of polythiophene/prussian red nanocomposite with dielectric, photocatalytic and metal scavenging properties. J Electron Mat 49:4018–4027

    Article  CAS  Google Scholar 

  25. Mir SH, Ochiai B (2018) Conductive polymer-ag honeycomb thin film: the factors affecting the complexity of the microstructure. J Electrochem Soc 165(8):B3034

    Google Scholar 

  26. Khosla A, Shah S, Shiblee MNI, Mir SH, Nagahara LA, Thundat T, Shekar PK, Kawakami M, Furukawa H (2018) Carbon fiber doped thermosetting elastomer for flexible sensors: physical properties and microfabrication. Sci rep 8(1):1–8

    Google Scholar 

  27. Meenakshi KS, Jaya Sudhan EP (2011) Development and study of the thermal and electrical behaviour of TGDDS epoxy nanocomposites for high-performance applications. Appl Nanosci 1:109–115

    Article  Google Scholar 

  28. Nikolic G, Zlatkovic S, Cakic M, Cakic S, Lacnjevac C, Rajic Z (2010) Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts. Sensors. https://doi.org/10.3390/s100100684

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suresh S, Saravanan P, Jayamoorthy K, Ananda Kumar S, Karthikeyan S (2016) Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater Sci Eng C 64:286–292

    Article  CAS  Google Scholar 

  30. Olad A, Nosrati R (2012) Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Res Chem Intermed 38:323–336

    Article  CAS  Google Scholar 

  31. Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86:549–555

    Article  CAS  Google Scholar 

  32. Sharma P, Choudhary V, Narula AK (2008) Curing and thermal behavior of epoxy resin in the presence of a mixture of imideamines. J Therm Anal Calorim 94:805–815

    Article  CAS  Google Scholar 

  33. Leszczynska A, Pielichowski K (2008) Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim 933:677–687

    Article  Google Scholar 

  34. Liška M, Antalík J (2004) Enthalpy relaxation in glasses: regression analysis of integral DSC data. J Therm Anal Calorim 67:213–222

    Article  Google Scholar 

  35. Ash B, Schadle L, Siegel R (2002) Glass transition behavior of alumina/polymethyl methacrylate nanocomposites. Mater Lett 55:83–87

    Article  CAS  Google Scholar 

  36. Nelson JK, Fothergill JC (2004) Internal charge behaviour of nanocomposites. Nanotechnology 15:586–595

    Article  CAS  Google Scholar 

  37. Lewis TJ (2006) Nano-composite dielectrics: the dielectric nature of the nano-particle environment. IEEJ Trans Fundam Mater 126:1020–1030

    Article  Google Scholar 

  38. Plesa I, Ciuprina F, Notingher PV (2010) Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers. J Adv Res Phys 1:011011

    Google Scholar 

  39. Huang X, Zheng Y, Jiang P, Yin Y (2010) Influence of nanoparticle surface treatment on the electrical properties of cycloaliphatic epoxy nanocomposites. IEEE Trans Dielectr Electr Insulation 17:635–643

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ravichandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisha, P., Suresh, S., Jayamoorthy, K. et al. Synthesis, spectral, thermal studies and dielectric behavior of functionalized TiO2-loaded diglycidyl epoxy nanocomposite film. Polym. Bull. 78, 5255–5274 (2021). https://doi.org/10.1007/s00289-020-03362-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03362-6

Keywords

Navigation