Skip to main content
Log in

Chondroitin sulfate-based smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: preparation, characterization and toxicity evaluation

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study was performed to evaluate the effect of chondroitin sulfate, acrylic acid and ammonium peroxodisulfate in formulation of a novel biodegradable and pH-sensitive hydrogel for targeted delivery of an anticancer drug oxaliplatin. The synthesized hydrogel was characterized by FTIR, thermal analysis and SEM. FTIR indicated efficient grafting. Thermogravimetric analysis depicted thermodynamically stable behavior. SEM of developed hydrogels revealed rough surface. pH-sensitivity was confirmed through swelling dynamics and drug release behavior at pH 1.2 and pH 7.4. Acute oral toxicity study indicated no mortality or any signs of acute toxicity during the whole observation period. Hence, the designed polymeric network could be considered safe and is potential candidate for colon targeting of oxaliplatin in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu L, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomater 24:3333–3343

    Article  CAS  Google Scholar 

  2. Basit A, Bloor J (2003) Prespectives on colonic drug delivery, business briefing. Pharm Technol 185–190

  3. Cheng G, An F, Zou MJ, Sun J, Hao XH, He YX (2004) Time-and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol 10:1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vemula SK, Veerareddy PR (2009) Different approaches to design and evaluation of colon specific drug delivery systems. Int J Pharm Tech 1:1–35

    CAS  Google Scholar 

  5. Orlu M, Cevher E, Araman A (2006) Design and evaluation of colon specific drug delivery system containing flurbiprofen microsponges. Int J Pharm 318:103–117

    Article  CAS  PubMed  Google Scholar 

  6. Ferlay J (2001) GLOBOCAN 2000. Cancer incidence, mortality and prevalence worldwide, version 1.0. IARC cancerbase

  7. Obrand DI, Gordon PH (1997) Incidence and patterns of recurrence following curative resection for colorectal carcinoma. Dis Colon Rectum 40:15–24

    Article  CAS  PubMed  Google Scholar 

  8. Pucciarelli S, Friso ML, Toppan P, Fornasiero A, Carnio S, Marchiori E, Lise M (2000) Preoperative combined radiotherapy and chemotherapy for middle and lower rectal cancer: preliminary results. Ann Surg Oncol 7:38–44

    Article  CAS  PubMed  Google Scholar 

  9. Raymond E, Chaney S, Taamma A, Cvitkovic E (1998) Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol 9:1053–1071

    Article  CAS  PubMed  Google Scholar 

  10. Luo FR, Wyrick SD, Chaney SG (1998) Cytotoxicity, cellular uptake, and cellular biotransformations of oxaliplatin in human colon carcinoma cells. Oncol Res Featur Preclin Clin Cancer Ther 10:595–603

    CAS  Google Scholar 

  11. Han B, Xu R, Shi Y, Luo H, Xiang X, Li Y et al (2007) Oxaliplatin, fluorouracil and leucovorin (FOLFOX) as first-line chemotherapy for metastatic or recurrent colorectal cancer patients. Chin J Clin Oncol 4:397–400

    Article  CAS  Google Scholar 

  12. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  13. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  14. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  PubMed  Google Scholar 

  15. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  16. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  PubMed  Google Scholar 

  17. Rajpurohit H, Sharma P, Sharma S, Bhandari A (2010) Polymers for colon targeted drug delivery. Indian J Pharm Sci 72:689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amin MC, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  CAS  Google Scholar 

  19. Pooley SA, Rivas BL, Lillo FE, Pizarro GD (2010) Hydrogels from acrylic acid with N, N-dimethylacrylamide: synthesis, characterization, and water absorption properties. J Chil Chem Soc 55:19–24

    Article  CAS  Google Scholar 

  20. Koetting MC, Peppas NA (2014) pH-Responsive poly (itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins. Int J Pharm 471:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samantha HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678

    Article  CAS  Google Scholar 

  22. Khalid I, Ahmad M, Usman Minhas M, Barkat K, Sohail M (2018) Cross-linked sodium alginate-g-poly (acrylic acid) structure: a potential hydrogel network for controlled delivery of loxoprofen sodium. Adv Polym Technol 37:985–995

    Article  CAS  Google Scholar 

  23. Khalid I, Ahmad M, Minhas MU, Sohail M (2014) Formulation and in vitro evaluation of mucoadhesive controlled release matrix tablets of flurbiprofen using response surface methodology. Braz J Pharm Sci 50:493–504

    Article  CAS  Google Scholar 

  24. Najib N, Suleiman M (1985) The kinetics of drug release from ethylcellulose solid dispersions. Drug Dev Ind Pharm 11:2169–2181

    Article  CAS  Google Scholar 

  25. Desai S, Simonelli A, Higuchi W (1965) Investigation of factors influencing release of solid drug dispersed in inert matrices. J Pharm Sci 54:1459–1464

    Article  CAS  PubMed  Google Scholar 

  26. Higuchi T (1963) Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  27. Peppas N (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    CAS  PubMed  Google Scholar 

  28. Crispim E, Piai J, Fajardo A, Ramos E, Nakamura T, Nakamura C, Rubira A, Muniz E (2012) Hydrogels based on chemically modified poly (vinyl alcohol) (PVA-GMA) and PVA-GMA/chondroitin sulfate: preparation and characterization. Express Polym Lett 6:383–395

    Article  CAS  Google Scholar 

  29. Wang L, Wang Z, Zhang X, Shen J, Chi L, Fuchs H (1997) A new approach for the fabrication of an alternating multilayer film of poly (4-vinylpyridine) and poly (acrylic acid) based on hydrogen bonding. Macromol Rapid Commun 18:509–514

    Article  CAS  Google Scholar 

  30. Tarducci C, Schofield W, Badyal J, Brewer S, Willis C (2002) Synthesis of cross-linked ethylene glycol dimethacrylate and cyclic methacrylic anhydride polymer structures by pulsed plasma deposition. Macromolecules 35:8724–8727

    Article  CAS  Google Scholar 

  31. He H, Xiao H, Kuang H, Xie Z, Chen X, Jing X, Huang Y (2014) Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloids Surf B 117:75–81

    Article  CAS  Google Scholar 

  32. Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomater 23:3193–3201

    Article  CAS  Google Scholar 

  33. Fajardo AR, Silva MB, Lopes LC, Piai JF, Rubira AF, Muniz EC (2012) Hydrogel based on an alginate–Ca2+/chondroitin sulfate matrix as a potential colon-specific drug delivery system. RSC Adv 2:11095–11103

    Article  CAS  Google Scholar 

  34. Ali L, Ahmad M, Usman M, Yousuf M (2014) Controlled release of highly water-soluble antidepressant from hybrid copolymer poly vinyl alcohol hydrogels. Polym Bull 71:31–46

    Article  CAS  Google Scholar 

  35. Amrutkar JR, Gattani SG (2009) Chitosan–chondroitin sulfate-based matrix tablets for colon specific delivery of indomethacin. AAPS PharmSciTech 10:670–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee C-T, Huang C-P, Lee Y-D (2007) Synthesis and characterizations of amphiphilic poly (l-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier. Biomol Eng 24:131–139

    Article  CAS  PubMed  Google Scholar 

  37. Mandal B, Ray SK (2013) Synthesis of interpenetrating network hydrogel from poly (acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water. Carbohydr Polym 98:257–269

    Article  CAS  PubMed  Google Scholar 

  38. Lee C-T, Kung P-H, Lee Y-D (2005) Preparation of poly (vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr Polym 61:348–354

    Article  CAS  Google Scholar 

  39. Ranjha NM, Ayub G, Naseem S, Ansari MT (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med 21:2805–2816

    Article  CAS  PubMed  Google Scholar 

  40. Ramelow US, Pingili S (2010) Synthesis of ethylene glycol dimethacrylate-methyl methacrylate copolymers, determination of their reactivity ratios, and a study of dopant and temperature effects on their conductivities. Polymers 2:265–285

    Article  CAS  Google Scholar 

  41. Hussain T, Ranjha NM, Shahzad Y (2011) Swelling and controlled release of tramadol hydrochloride from a pH-sensitive hydrogel. Des Monomers Polym 14:233–249

    Article  CAS  Google Scholar 

  42. Huang L, Sui W, Wang Y, Jiao Q (2010) Preparation of chitosan/chondroitin sulfate complex microcapsules and application in controlled release of 5-fluorouracil. Carbohydr Polym 80:168–173

    Article  CAS  Google Scholar 

  43. Zarzycki R, Modrzejewska Z, Nawrotek K (2010) Drug release from hydrogel matrices. Ecol Chem Eng S 17:117–136

    CAS  Google Scholar 

  44. Jaykaran BP, Kantharia N, Yadav P, Panwar A (2009) Acute toxicity study of an aqueous extract of Ficus racemosa Linn. bark in albino mice. Internet J Toxicol 6(1):1–6

    Google Scholar 

  45. Arvind P, Nilesh C, Manoj S, Preeti Y (2010) Subacute toxicity study of an aqueous extract of Ficus racemosa Linn. bark in rats. J Pharm Res 3:814–817

    Google Scholar 

  46. Erum A, Bashir S, Saghir S, Tulain UR, Saleem U, Nasir M, Kanwal F, Hayat Malik MN (2015) Acute toxicity studies of a novel excipient arabinoxylan isolated from Ispaghula (Plantago ovata) husk. Drug Chem Toxicol 38:300–305

    Article  CAS  PubMed  Google Scholar 

  47. Pariyani R, Safinar Ismail I, Azam AA, Abas F, Shaari K, Sulaiman MR (2015) Phytochemical screening and acute oral toxicity study of Java tea leaf extracts. BioMed Res Int 2015:1–8

    Article  CAS  Google Scholar 

  48. Sreejayan N, Marone PA, Lau FC, Yasmin T, Bagchi M, Bagchi D (2010) Safety and toxicological evaluation of a novel chromium(III) dinicocysteinate complex. Toxicol Mech Methods 20:321–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ahmad.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Human and animal rights

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkat, K., Ahmad, M., Minhas, M.U. et al. Chondroitin sulfate-based smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: preparation, characterization and toxicity evaluation. Polym. Bull. 77, 6271–6297 (2020). https://doi.org/10.1007/s00289-019-03062-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03062-w

Keywords

Navigation