Skip to main content
Log in

Exfoliation and gelation in laponite–carboxymethyl cellulose complexes and its application in sustained drug release

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Herein, we have reported the exfoliation of laponite (L) in the presence of carboxymethyl cellulose (CMC) and the formation of CMC–laponite (CMC–L) nanocomposite gel. Analysis of CMC–L complex using XRD confirmed that the addition of CMC actually exfoliates laponites. The interplanar spacing of laponite was observed to increase from 0.74 to 0.98 nm when concentration of CMC, CCMC, increased from 0 to 0.5% w/v in aqueous solution of laponite having concentration of laponite, CL = 1% w/v. Time-dependent scattering intensity studied by dynamic light scattering on CMC–L complex (CCMC = 0.5% w/v, CL = 1% w/v) in aqueous medium illustrated that the exfoliation progresses with the passage of time. It was further observed that the CMC–L complex (CL = 1% w/v, CCMC ≥ 0.5% w/v) forms gel, and the strength of gel increases with the increase in CMC concentration in aqueous medium owing to interaction between exfoliated laponite and CMC. Furthermore, microstructure of the gels and their mesh size were studied using small-angle neutron scattering (SANS). SANS study revealed the fact that with the increase in CCMC from 0.5 to 2% w/v in CMC–L gels, mesh size, ξ decreases from 0.29 to 0.24 nm. This decrease in mesh size is responsible for sustained drug release of methylene blue which was chosen as a cationic model drug. The obtained drug release profile was fitted with different release kinetic models, and it was found that release profile follow first-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Lorthioir C, Khalil M, Wintgens V, Amiel C (2012) Segmental motions of poly(ethylene glycol) chains adsorbed on laponite platelets in clay-based hydrogels: a NMR investigation. Langmuir 28:7859–7871. https://doi.org/10.1021/la3010757

    Article  CAS  PubMed  Google Scholar 

  2. Mauroy H, Rozynek Z, Plivelic TS et al (2013) Oxygen-controlled phase segregation in poly(N-isopropylacrylamide)/laponite nanocomposite hydrogels. Langmuir 29:371–379. https://doi.org/10.1021/la303889s

    Article  CAS  PubMed  Google Scholar 

  3. Sun K, Raghavan SR (2010) Thermogelling aqueous fluids containing low concentrations of pluronic F127 and laponite nanoparticles. Langmuir 26:8015–8020. https://doi.org/10.1021/la904907b

    Article  CAS  PubMed  Google Scholar 

  4. Xu D, Hodges C, Ding Y et al (2010) A QCM study on the adsorption of colloidal laponite at the solid/liquid interface. Langmuir 26:8366–8372. https://doi.org/10.1021/la904784a

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, Liu Z, Wu D et al (2013) Edge-modified amphiphilic laponite nano-discs for stabilizing pickering emulsions. J Colloid Interface Sci 410:27–32. https://doi.org/10.1016/j.jcis.2013.07.060

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Wu Y, Guo R et al (2013) Laponite nanodisks as an efficient platform for doxorubicin delivery to cancer cells. Langmuir 29:5030–5036. https://doi.org/10.1021/la4001363

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Sun P, Xue G, Winter HH (2010) Late-state ripening dynamics of a polymer/clay nanocomposite. Macromolecules 43:1901–1906. https://doi.org/10.1021/ma901665m

    Article  CAS  Google Scholar 

  8. Nie X, Adalati A, Du J et al (2014) Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers. Appl Clay Sci 97–98:132–137. https://doi.org/10.1016/j.clay.2014.05.020

    Article  CAS  Google Scholar 

  9. Sharma A, Rawat K, Solanki PR, Bohidar HB (2017) Surface patch binding-induced exfoliation of nanoclays and enhancement of physical properties of gelatin organogels: Surface patch binding-induced exfoliation of nanoclays. Polym Int 66:327–336. https://doi.org/10.1002/pi.5281

    Article  CAS  Google Scholar 

  10. Nicolai T, Cocard S (2000) Light scattering study of the dispersion of laponite. Langmuir 16:8189–8193. https://doi.org/10.1021/la9915623

    Article  CAS  Google Scholar 

  11. Takahashi N, Hata H, Kuroda K (2011) Exfoliation of layered silicates through immobilization of imidazolium groups. Chem Mater 23:266–273. https://doi.org/10.1021/cm102942s

    Article  CAS  Google Scholar 

  12. Ali S, Bandyopadhyay R (2015) Evaluation of the exfoliation and stability of Na-montmorillonite in aqueous dispersions. Appl Clay Sci 114:85–92. https://doi.org/10.1016/j.clay.2015.05.013

    Article  CAS  Google Scholar 

  13. Karpovich A, Vlasova M, Sapronova N et al (2016) Exfoliation dynamics of laponite clay in aqueous suspensions studied by NMR relaxometry. Orient J Chem 32:1679–1683. https://doi.org/10.13005/ojc/320346

    Article  CAS  Google Scholar 

  14. Wu W, Dong Z, He J et al (2016) Transparent cellulose/laponite nanocomposite films. J Mater Sci 51:4125–4133. https://doi.org/10.1007/s10853-016-9735-8

    Article  CAS  Google Scholar 

  15. Gabr MH, Phong NT, Abdelkareem MA et al (2013) Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites. Cellulose 20:819–826. https://doi.org/10.1007/s10570-013-9876-8

    Article  CAS  Google Scholar 

  16. Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157. https://doi.org/10.1039/c0sm00067a

    Article  CAS  Google Scholar 

  17. Boyer C, Figueiredo L, Pace R et al (2018) Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 65:112–122. https://doi.org/10.1016/j.actbio.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  18. Lewis G (2017) Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review: properties of nanofiller-loaded bone cements. J Biomed Mater Res B Appl Biomater 105:1260–1284. https://doi.org/10.1002/jbm.b.33643

    Article  CAS  PubMed  Google Scholar 

  19. Golafshan N, Rezahasani R, Tarkesh Esfahani M et al (2017) Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material. Carbohydr Polym 176:392–401. https://doi.org/10.1016/j.carbpol.2017.08.070

    Article  CAS  PubMed  Google Scholar 

  20. Gonçalves M, Figueira P, Maciel D et al (2014) pH-sensitive laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 10:300–307. https://doi.org/10.1016/j.actbio.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  21. Cerisuelo JP, Gavara R, Hernández-Muñoz P (2015) Diffusion modeling in polymer–clay nanocomposites for food packaging applications through finite element analysis of TEM images. J Membr Sci 482:92–102. https://doi.org/10.1016/j.memsci.2015.02.031

    Article  CAS  Google Scholar 

  22. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439. https://doi.org/10.1021/jf401273n

    Article  CAS  PubMed  Google Scholar 

  23. Ramos AM, Pereira S, Cidade MT et al (2013) Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes. Solid State Ion 242:26–32. https://doi.org/10.1016/j.ssi.2013.03.028

    Article  CAS  Google Scholar 

  24. Yao K, Huang S, Tang H et al (2017) Bioinspired interface engineering for moisture resistance in nacre-mimetic cellulose nanofibrils/clay nanocomposites. ACS Appl Mater Interfaces 9:20169–20178. https://doi.org/10.1021/acsami.7b02177

    Article  CAS  PubMed  Google Scholar 

  25. Gul S, Kausar A, Muhammad B, Jabeen S (2016) Research progress on properties and applications of polymer/clay nanocomposite. Polym Plast Technol Eng 55:684–703. https://doi.org/10.1080/03602559.2015.1098699

    Article  CAS  Google Scholar 

  26. Luo J (2003) Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol 63:1607–1616. https://doi.org/10.1016/S0266-3538(03)00060-5

    Article  CAS  Google Scholar 

  27. de Oliveira RL, da Barud HS, De Salvi DTB et al (2015) Transparent organic–inorganic nanocomposites membranes based on carboxymethylcellulose and synthetic clay. Ind Crops Prod 69:415–423. https://doi.org/10.1016/j.indcrop.2015.02.015

    Article  CAS  Google Scholar 

  28. Farhadnejad H, Mortazavi SA, Erfan M et al (2018) Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release. Int J Biol Macromol 111:696–705. https://doi.org/10.1016/j.ijbiomac.2018.01.061

    Article  CAS  PubMed  Google Scholar 

  29. Perotti GF, Barud HS, Messaddeq Y et al (2011) Bacterial cellulose–laponite clay nanocomposites. Polymer 52:157–163. https://doi.org/10.1016/j.polymer.2010.10.062

    Article  CAS  Google Scholar 

  30. Yuan Z, Fan Q, Dai X et al (2014) Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films. Carbohydr Polym 102:431–437. https://doi.org/10.1016/j.carbpol.2013.11.051

    Article  CAS  PubMed  Google Scholar 

  31. Yang Q, Wu C-N, Saito T, Isogai A (2014) Cellulose–clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution. Carbohydr Polym 100:179–184. https://doi.org/10.1016/j.carbpol.2012.10.044

    Article  CAS  PubMed  Google Scholar 

  32. Bounabi L, Mokhnachi NB, Haddadine N et al (2016) Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J Drug Deliv Sci Technol 33:58–65. https://doi.org/10.1016/j.jddst.2016.03.010

    Article  CAS  Google Scholar 

  33. Hernández D, Lazo L, Valdés L et al (2018) Synthetic clay mineral as nanocarrier of sulfamethoxazole and trimethoprim. Appl Clay Sci 161:395–403. https://doi.org/10.1016/j.clay.2018.03.016

    Article  CAS  Google Scholar 

  34. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382. https://doi.org/10.1122/1.549853

    Article  CAS  Google Scholar 

  35. Barnes HA (2000) A handbook of elementary rheology. University of Wales, Wales

    Google Scholar 

  36. Arfin N, Bohidar HB (2014) Ergodic-to-nonergodic phase inversion and reentrant ergodicity transition in DNA–nanoclay dispersions. Soft Matter 10:149–156. https://doi.org/10.1039/C3SM52218K

    Article  CAS  PubMed  Google Scholar 

  37. Arfin N, Aswal VK, Bohidar HB (2014) Overcharging, thermal, viscoelastic and hydration properties of DNA–gelatin complex coacervates: pharmaceutical and food industries. RSC Adv 4:11705–11713. https://doi.org/10.1039/C3RA46618C

    Article  CAS  Google Scholar 

  38. Arfin N, Aswal VK, Kohlbrecher J, Bohidar HB (2015) Relaxation dynamics and structural changes in DNA soft gels. Polymer 65:175–182. https://doi.org/10.1016/j.polymer.2015.03.073

    Article  CAS  Google Scholar 

  39. Papagiannopoulos A, Zhao J, Zhang G et al (2014) Thermoresponsive aggregation of PS–PNIPAM–PS triblock copolymer: a combined study of light scattering and small angle neutron scattering. Eur Polym J 56:59–68. https://doi.org/10.1016/j.eurpolymj.2014.04.013

    Article  CAS  Google Scholar 

  40. Li Y, Maciel D, Tomás H et al (2011) pH sensitive laponite/alginate hybrid hydrogels: swelling behaviour and release mechanism. Soft Matter 7:6231. https://doi.org/10.1039/c1sm05345k

    Article  CAS  Google Scholar 

  41. Tsai F-H, Chiang P-Y, Kitamura Y et al (2017) Producing liquid-core hydrogel beads by reverse spherification: effect of secondary gelation on physical properties and release characteristics. Food Hydrocoll 62:140–148. https://doi.org/10.1016/j.foodhyd.2016.07.002

    Article  CAS  Google Scholar 

  42. Eswaramma S, Reddy NS, Rao KSVK (2017) Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: development, swelling dynamics and drug release characteristics. Int J Biol Macromol 103:1162–1172. https://doi.org/10.1016/j.ijbiomac.2017.05.160

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Hui PCL, Wat E et al (2016) In vitro drug release and percutaneous behavior of poloxamer-based hydrogel formulation containing traditional Chinese medicine. Colloids Surf B Biointerfaces 148:526–532. https://doi.org/10.1016/j.colsurfb.2016.09.036

    Article  CAS  PubMed  Google Scholar 

  44. Rassu G, Salis A, Porcu EP et al (2016) Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases. Carbohydr Polym 136:1338–1347. https://doi.org/10.1016/j.carbpol.2015.10.048

    Article  CAS  PubMed  Google Scholar 

  45. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    CAS  PubMed  Google Scholar 

  46. Jung H, Kim H-M, Choy YB et al (2008) Itraconazole–laponite: kinetics and mechanism of drug release. Appl Clay Sci 40:99–107. https://doi.org/10.1016/j.clay.2007.09.002

    Article  CAS  Google Scholar 

  47. Joshi GV, Pawar RR, Kevadiya BD et al (2011) Mesoporous synthetic hectorites: a versatile layered host with drug delivery application. Microporous Mesoporous Mater 142:542–548. https://doi.org/10.1016/j.micromeso.2010.12.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC start-up Grant (F.30-359/2017(BSR)) for the funding. Authors are also thankful to the Central Instrumentation Facility, Jamia Millia Islamia and Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia for the instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmul Arfin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, P., Ranjan, R., Das, K. et al. Exfoliation and gelation in laponite–carboxymethyl cellulose complexes and its application in sustained drug release. Polym. Bull. 77, 5389–5406 (2020). https://doi.org/10.1007/s00289-019-03019-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03019-z

Navigation