Skip to main content
Log in

Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Green nanocomposite films were elaborated from cellulose acetate (CA), three clay types as nanofillers, namely natural montmorillonite (Na-MMT) and organo-modified MMT with gelatin (Ge-MMT) or chitosan (Cs-MMT) and in the presence or absence of triethyl citrate (TEC) as an eco-friendly plasticizer, using solvent-casting method. The formation of the organoclays was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The nanoclay dispersion within CA matrix was investigated by XRD analysis together with transmission electron microscopy (TEM). For unplasticized nano-hybrids, it was observed intercalated/exfoliated structures with a small clay tactoïds remaining, although a more aggregated structure was obtained in the presence of unmodified MMT. The plasticized nano-hybrids exhibited mainly intercalated/aggregated structure, while some exfoliated layers were much labeled in the presence of Ge-MMT nanoclay. Glass transition (T g) and melting (T m) temperatures of CA, as attested by differential scanning calorimetry (DSC) analysis, were slightly affected by clay addition. Besides, the thermal stabilities and water vapor barriers properties of CA-based nano-hybrids were enhanced by increasing clay loading, while the optical clarity, assessed by UV–visible spectroscopy, was rather decreased. Better nanocomposite properties were reached in the presence of Ge-MMT at 5 wt%. The clay impact on CA biodegradation was also studied by gravimetric, scanning electron microscopy (SEM) and TGA methods. The results highlighted a retarding effect of nanoclays, except for Ge-MMT that showed a catalytic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689

    Article  CAS  Google Scholar 

  2. Kaiser MR, Anuar HB, Samat NB, Abdul Razak SB (2013) Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J 22:123–131

    Article  CAS  Google Scholar 

  3. Ojijo V, Ray SS (2014) Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay. Prog Mater Sci 62:1–57

    Article  CAS  Google Scholar 

  4. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  5. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503

    Article  CAS  Google Scholar 

  6. Rusli H, Gandasasmita S, Amran MB (2013) Cellulose acetate-silica fume membrane: characterization and application for separation of starch and maltose. Iran Polym J 22:335–340

    Article  CAS  Google Scholar 

  7. El Badawi N, Ramadan AR, Esawi AMK, El-Morsi M (2014) Novel carbon nanotube-cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344:79–85

    Article  Google Scholar 

  8. Yoshioka M, Takabe K, Sugiyama J, Nishio Y (2006) Newly developed nanocomposites from cellulose acetate/layered silicate/poly (e-caprolactone): synthesis and morphological characterization. J Wood Sci 52:121–127

    Article  CAS  Google Scholar 

  9. Nejad MH, Ganster J, Bohn A, Pinnow M, Volkert B (2009) Bio-based nanocomposites of cellulose acetate and nanoclay with superior mechanical properties. Macromol Symp 280:123–129

    Article  Google Scholar 

  10. Rodríguez FJ, Coloma A, Galotto MJ, Guarda A, Bruna JE (2012) Effect of organoclay content and molecular weight on cellulose acetate nanocomposites properties. Polym Degrad Stabil 97:1996–2001

    Article  Google Scholar 

  11. Park HM, Liang X, Mohanty AK, Misra M, Drzal LT (2004) Effect of compatibilizer on nanostructure of the biodegradable cellulose acetate/organoclay nanocomposites. Macromolecules 37:9076–9082

    Article  CAS  Google Scholar 

  12. Wibowo A, Misra M, Park HM, Drzal LT, Schalek R, Mohanty AK (2006) Biodegradable nanocomposites from cellulose acetate: mechanical, morphological, and thermal properties. Comp Part A A37:1428–1433

    Article  Google Scholar 

  13. Park HM, Mohanty AK, Drzal LT, Lee E, Mielewski DF, Misra M (2006) Effect of sequential mixing and compounding conditions on cellulose acetate/layered silicate nanocomposites. J Polym Environ 14:27–35

    Article  CAS  Google Scholar 

  14. Romero RB, Leite CAP, Gonçalves MC (2009) The effect of the solvent on the morphology of cellulose acetate/montmorillonite nanocomposites. Polymer 50:161–170

    Article  CAS  Google Scholar 

  15. De Lima JA, Pinotti CA, Felisberti MI, Gonçalves MC (2012) Morphology and mechanical properties of nanocomposites of cellulose acetate and organic montmorillonite prepared with different plasticizers. J Appl Polym Sci 124:4628–4635

    Google Scholar 

  16. Zhang W, Liang Y, Luo W, Fang Y (2003) Effects of clay-modifying agents on the morphology and properties of poly(methyl methacrylate)/clay nanocomposites synthesized via γ-ray irradiation polymerization. J Polym Sci Pol Chem 41:321–325

    Google Scholar 

  17. Lin FH, Chen CH, Change WTK, Kuo TF (2006) Modified montmorillonite as vector for gene delivery. Biomaterials 27:3333–3338

    Article  CAS  Google Scholar 

  18. Ratinac KR, Gilbert RG, Ye L, Jones AS, Ringer SP (2006) The effects of processing and organoclay properties on structure of poly(methyl methacrylate)-clay nanocomposites. Polymer 47:6337–6361

    Article  CAS  Google Scholar 

  19. Chiu YC, Huang LN, Vang CM, Huang JF (1990) Determination of cation exchange capacity of clay minerals by potentiometric titration using divalent cation electrodes. Colloid Surf 46:327–337

    Article  CAS  Google Scholar 

  20. Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. Wiley, New York

    Google Scholar 

  21. Patel HA, Somani RS, Bajaj HC, Jasra RV (2007) Preparation and characterization of phosphonium montmorillonite with enhanced thermal stability. Appl Clay Sci 35:194–200

    Article  CAS  Google Scholar 

  22. Kumirska J, Czerwicka M, Kaczyński Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8:1567–1636

    Article  CAS  Google Scholar 

  23. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2007) Highly rapid preparation of a bio-modified nanoclay with chitosan. Iran Polym J 16:147–151

    CAS  Google Scholar 

  24. Zhang JP, Xi LF, Zhang HL, Yao KD (2003) Correlation between reaction environment and intercalation effect in the synthesis of gelatin/montmorillonite hybrid nanocomposite. J Mater Sci Lett 22:1179–1181

    Article  Google Scholar 

  25. Xu SW, Zhang JP, Tong L, Yao KD (2006) Interaction of functional groups of gelatin and montmorillonite in nanocomposite. J Appl Polym Sci 101:1556–1561

    Article  CAS  Google Scholar 

  26. Ferfera-Harrar H, Dairi N (2013) Elaboration of cellulose acetate nanobiocomposites using acidified gelatin-montmorillonite as nanofiller morphology, properties, and biodegradation studies. Polym Compos 34:1515–1524

    Article  CAS  Google Scholar 

  27. Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780

    Article  CAS  Google Scholar 

  28. Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    Article  CAS  Google Scholar 

  29. Martucci JF, Vázquez A, Ruseckaite RA (2007) Nanocomposites based on gelatin and montmorillonite morphological and thermal studies. J Therm Anal Calorim 89:117–122

    Article  CAS  Google Scholar 

  30. Zhang K, Xu J, Wang KY, Cheng L, Wang J, Liu B (2009) Preparation and characterization of chitosan nanocomposites with vermiculite of different modification. Polym Degrad Stabil 94:2121–2127

    Article  CAS  Google Scholar 

  31. Vazquez A, López M, Kortaberria G, Martín L, Mondragon I (2008) Modification of montmorillonite with cationic surfactants. Thermal and chemical analysis including CEC determination. Appl Clay Sci 41:24–36

    Article  CAS  Google Scholar 

  32. Rodríguez FJ, Galotto MJ, Guarda A, Bruna JE (2012) Modification of cellulose acetate films using nanofillers based on organoclays. J Food Eng 110:262–268

    Article  Google Scholar 

  33. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stabil 90:123–131

    Article  CAS  Google Scholar 

  34. McLauchlin AR, Thomas NL (2009) Development of a novel organoclay for poly(lactic acid) nanocomposites. Polym Degrad Stabil 94:868–872

    Article  CAS  Google Scholar 

  35. Park HM, Misra Drzal LT, Mohanty AK (2004) Green nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 5:2281–2288

    Article  CAS  Google Scholar 

  36. Romero RB, Ferrarezi MMF, Leite CAP, Alves RMV, Gonçalves MC (2013) Influence of the layered silicate type on the structure, morphology and properties of cellulose acetate nanocomposites. Cellulose 20:675–686

    Article  CAS  Google Scholar 

  37. Tsai TY, Lin MJ, Chuang YC, Chou PC (2013) Effects of modified clay on the morphology and thermal stability of PMMA/clay nanocomposites. Mater Chem Phys 138:230–237

    Article  CAS  Google Scholar 

  38. Kanmani P, Rhim JW (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid 35:644–652

    Article  CAS  Google Scholar 

  39. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  40. Bahramian AR, Ahmadi LS, Kokabi M (2014) Performance evaluation of polymer/clay nanocomposite thermal protection systems based on polyethylene glycol phase change material. Iran Polym J 23:163–169

    Article  CAS  Google Scholar 

  41. Sun X, Lu C, Zhang W, Tian D, Zhang X (2013) Acetone-soluble cellulose acetate extracted from waste blended fabrics via ionic liquid catalyzed acetylation. Carbohydr Polym 98:405–411

    Article  CAS  Google Scholar 

  42. Wertz JL, Bédué O, Mercier JP (2010) Cellulose science and technology. EPFL Press, Switzerland

    Google Scholar 

  43. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites. Eur Polym J 45:967–984

    Article  CAS  Google Scholar 

  44. Gu J, Eberiel DT, McCarthy SP, Gross RA (1993) Degradation and mineralization of cellulose acetate in simulated thermophilic compost environments. J Environ Polym Degrad 1:281–291

    Article  CAS  Google Scholar 

  45. Buchahnan CM, Gardner RM, Komarek RJ (1993) Aerobic biodegradation of cellulose acetate. J Appl Polym Sci 47:1709–1719

    Article  Google Scholar 

  46. Olaru L, Olaru N, Popa VI (2004) On enzymatic degradation of cellulose acetate. Iran Polym J 13:235–240

    CAS  Google Scholar 

  47. Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials. J Polym Environ 19:152–165

    Article  CAS  Google Scholar 

  48. Calil MR, Gaboardi F, Bardi MAG, Rezende ML, Rosa DS (2007) Enzymatic degradation of poly (ε-caprolactone) and cellulose acetate blends by lipase and α-amylase. Polym Test 26:257–261

    Article  CAS  Google Scholar 

  49. Maiti P, Batt CA, Giannelis EP (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59

    CAS  Google Scholar 

  50. Wu TM, Wu CY (2006) Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stabil 91:2198–2204

    Article  CAS  Google Scholar 

  51. Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly (lactic acid) and its nanocomposites. Polym Degrad Stabil 94:1646–1655

    Article  CAS  Google Scholar 

  52. Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Biodegradation trend of poly (ε-caprolactone) and nanocomposites. Mater Sci Eng C 30:566–574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Ferfera-Harrar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferfera-Harrar, H., Dairi, N. Green nanocomposite films based on cellulose acetate and biopolymer-modified nanoclays: studies on morphology and properties. Iran Polym J 23, 917–931 (2014). https://doi.org/10.1007/s13726-014-0286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0286-z

Keywords

Navigation