Skip to main content
Log in

Dissolution of lignocellulosic biopolymers in ethanolamine-based protic ionic liquids

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work evaluates the potential use of 2-hydroxy ethylammonium-based protic ionic liquids (PILs) for dissolving the major lignocellulosic biopolymers such as cellulose, xylose and lignin. Three PILs, 2-hydroxy ethylammonium formate (2-HEAF), 2-hydroxy ethylammonium acetate (2-HEAA) and 2-hydroxy ethylammonium propionate 2-HEAPr, were synthesized and characterized (viscosity, density and conductivity). A small amount of biopolymer was added to the PILs; the biopolymers’ dissolution curves were determined from 30 °C up to 100 °C on these solvents using a hot stage coupled to an optical microscope. The results show that while xylose and lignin could be dissolved by the PILs, cellulose could not, and also that 2-HEAF—which presented the higher ionicity—was the most appropriate PIL among those tested to dissolve these biopolymers (xylose and lignin). They also show that lignin dissolution is faster when an anion with a short alkyl carbon chain is used and that higher heating rates require a somewhat higher temperature to achieve full dissolution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefining 2:41–57. https://doi.org/10.1002/bbb.43

    Article  CAS  Google Scholar 

  2. Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587. https://doi.org/10.1016/j.biortech.2008.11.052

    Article  CAS  PubMed  Google Scholar 

  3. Yang B, Wyman E (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2:26–40. https://doi.org/10.1002/bbb.49

    Article  CAS  Google Scholar 

  4. Kim TH (2013) Pretreatment of lignocellulosic biomass. In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, pp 91–105

  5. Mosier N, Wyman CE, Dale BD, Elander RT, Lee YY, Holtzapple M, Ladisch CM (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  PubMed  Google Scholar 

  6. Taha M, Foda M, Shahsavari E, Aburto-medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197. https://doi.org/10.1016/j.copbio.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  7. Tye YY, Lee KT, Wan Abdullah WN, Leh CP (2016) The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev 60:155–172. https://doi.org/10.1016/j.rser.2016.01.072

    Article  CAS  Google Scholar 

  8. Paulová L, Melzoch K, Rychtera M, Patáková P (2013) Production of 2nd generation of liquid biofuels. In: Fang Z (ed) Liquid, gaseous and solid biofuels: conversion techniques, 1st edn. INTECH Open Acess Publisher, Rijeka, pp 47–74

    Google Scholar 

  9. Kumar P, Barret DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  CAS  Google Scholar 

  10. Yu Q, Zhuang X, Shuangliang LV, Zhang Y, Yuan Z, Qi W, Wang Q, Wang W, Tan X (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol 129:592–598. https://doi.org/10.1016/j.biortech.2012.11.099

    Article  CAS  PubMed  Google Scholar 

  11. Travaini R, Otero MDM, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339. https://doi.org/10.1016/j.biortech.2013.01.133

    Article  CAS  PubMed  Google Scholar 

  12. Moretti MMS, Bocchinni-Martins DA, Nunes CCC, Villena MA, Perrone OM, Silva R, Boscolo M, Gomes E (2014) Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Appl Energy 122:189–195. https://doi.org/10.1016/j.apenergy.2014.02.020

    Article  CAS  Google Scholar 

  13. Bian J, Peng F, Peng X, Xiao X, Peng P, Xu F, Sun R (2014) Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym 100:211–217. https://doi.org/10.1016/j.carbpol.2013.02.059

    Article  CAS  PubMed  Google Scholar 

  14. Martins LHS, Rabelo SM, Costa AC (2015) Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse. Bioresour Technol 191:312–321. https://doi.org/10.1016/j.biortech.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  15. Tassinari T, Macy C, Spano L (1980) Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnol Bioeng 22:1689–1705. https://doi.org/10.1002/bit.260220811

    Article  CAS  Google Scholar 

  16. Silva AS, Inoue H, Endo T, Yano S, Bom EPS (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101:7402–7409. https://doi.org/10.1016/j.biortech.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  17. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580. https://doi.org/10.1021/ie3022785

    Article  CAS  Google Scholar 

  18. Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83. https://doi.org/10.1016/S1369-703X(03)00141-4

    Article  CAS  Google Scholar 

  19. Pielhop T, Amgarten J, Von Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:1–13. https://doi.org/10.1186/s13068-016-0567-1

    Article  CAS  Google Scholar 

  20. Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8:274–280. https://doi.org/10.1016/0141-0229(86)90021-9

    Article  CAS  Google Scholar 

  21. Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Heal Part B 24:421–433. https://doi.org/10.1080/03601238909372658

    Article  Google Scholar 

  22. Rabelo SC, Andrade RR, Maciel Filho R, Costa AC (2014) Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel 136:349–357. https://doi.org/10.1016/j.fuel.2014.07.033

    Article  CAS  Google Scholar 

  23. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  24. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. https://doi.org/10.1016/j.biortech.2009.10.066

    Article  CAS  PubMed  Google Scholar 

  25. Shen Z, Jin C, Pei H, Shi J, Liu L, Sun J (2014) Pretreatment of corn stover with acidic electrolyzed water and FeCl3 leads to enhanced enzymatic hydrolysis. Cellulose 21:3383–3394. https://doi.org/10.1007/s10570-014-0353-9

    Article  CAS  Google Scholar 

  26. Demirel F, Germec M, Coban HB, Turhan I (2018) Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 25:6377–6393. https://doi.org/10.1007/s10570-018-2022-x

    Article  CAS  Google Scholar 

  27. Loow YL, Wu TY, Jahim JM, Mohammad AW, Teoh WH (2016) Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23:1491–1520. https://doi.org/10.1007/s10570-016-0936-8

    Article  CAS  Google Scholar 

  28. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. https://doi.org/10.1007/s00253-009-1883-1

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IA (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381. https://doi.org/10.1039/C5GC02034D

    Article  CAS  Google Scholar 

  30. Mou H, Wu S (2017) Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose 24:85–94. https://doi.org/10.1007/s10570-016-1117-5

    Article  CAS  Google Scholar 

  31. Zhang H, Wu S (2015) Generation of lignin and enzymatically digestible cellulose from ethanol-based organosolv pretreatment of sugarcane bagasse. Cellulose 22:2409–2418. https://doi.org/10.1007/s10570-015-0678-z

    Article  CAS  Google Scholar 

  32. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032. https://doi.org/10.1016/j.biortech.2005.01.018

    Article  CAS  PubMed  Google Scholar 

  33. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. https://doi.org/10.1021/ja025790m

    Article  CAS  PubMed  Google Scholar 

  34. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33. https://doi.org/10.1080/02773810701282330

    Article  CAS  Google Scholar 

  35. D’Andola G, Szarvas L, Massonne K, Stegmann V (2008) Ionic liquids for solubilizing polymers. Wo pat 43837

  36. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69. https://doi.org/10.1039/B607614A

    Article  CAS  Google Scholar 

  37. Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696. https://doi.org/10.1039/b801489b

    Article  CAS  Google Scholar 

  38. Saha KS, Dasgupta J, Chakraborty S, Antunes FAF, Sikder J, Curcio S, dos Santos JC, Arafat HA, da Silva SS (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24:3191–3207. https://doi.org/10.1007/s10570-017-1330-x

    Article  CAS  Google Scholar 

  39. Álvarez VH, Dosil N, Gonzalez-Cabaleiro R, Mattedi S, Martin-Pastor M, Iglesias M (2010) Brønsted ionic liquids for sustainable processes: synthesis and physical properties. J Chem Eng Data 55:625–632. https://doi.org/10.1021/je900550v

    Article  CAS  Google Scholar 

  40. Wassercheid P, Welton T (2008) Ionic liquids in synthesis. Wiley, New York

    Google Scholar 

  41. Mirjafari A, Pham LN, Mccabe JR, Mobarrez N, Salter EA, Wierzbicki A, West KN, Sykora RE, Davis JH Jr (2013) Building a bridge between aprotic and protic ionic liquids. RSC Adv 3:337–340. https://doi.org/10.1039/c2ra22752e

    Article  CAS  Google Scholar 

  42. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ (2006) Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. J Phys Chem B 110:22479–22487. https://doi.org/10.1021/jp0634048

    Article  CAS  PubMed  Google Scholar 

  43. Huddleston JG, Willauer HD, Swatloski RP, Vissier AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem Commun. https://doi.org/10.1039/A803999B

    Article  Google Scholar 

  44. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655. https://doi.org/10.1039/b822702k

    Article  CAS  Google Scholar 

  45. Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679. https://doi.org/10.1039/b918787a

    Article  CAS  Google Scholar 

  46. Teh WX, Hossain MM, To TQ, Aldous L (2015) Pretreatment of macadamia nut shells with ionic liquids facilitates both mechanical cracking and enzymatic hydrolysis. ACS Sustain Chem Eng 3:992–999. https://doi.org/10.1021/acssuschemeng.5b00126

    Article  CAS  Google Scholar 

  47. George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734. https://doi.org/10.1039/c4gc01208a

    Article  CAS  Google Scholar 

  48. Asakawa A, Kohara M, Sasaki C, Asada C, Nakamura Y (2015) Comparison of choline acetate ionic liquid pretreatment with various pretreatments for enhancing the enzymatic saccharification of sugarcane bagasse. Ind Crops Prod 71:147–152. https://doi.org/10.1016/j.indcrop.2015.03.073

    Article  CAS  Google Scholar 

  49. An YX, Zong MH, Wu H, Li N (2015) Pretreatment of lignocellulosic biomass with renewable cholinium ionic liquids: biomass fractionation, enzymatic digestion and ionic liquid reuse. Bioresour Technol 192:165–171. https://doi.org/10.1016/j.biortech.2015.05.064

    Article  CAS  PubMed  Google Scholar 

  50. Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102. https://doi.org/10.1039/c7gc00705a

    Article  CAS  Google Scholar 

  51. Rocha EGA, Pin TC, Rabelo SC, Costa AC (2017) Evaluation of the use of protic ionic liquids on biomass fractionation. Fuel 206:145–154. https://doi.org/10.1016/j.fuel.2017.06.014

    Article  CAS  Google Scholar 

  52. Reis CLB, Silva LMA, Rodrigues THS, Félix AKN, Santiago-Aguiar RS, Km Canuto, Rocha MVP (2017) Pretreatment of cashew apple bagasse using protic ionic liquids: enhanced enzymatic hydrolysis. Bioresour Technol 224:694–701. https://doi.org/10.1016/j.biortech.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  53. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583. https://doi.org/10.1039/c2gc36364j

    Article  CAS  Google Scholar 

  54. Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119. https://doi.org/10.1039/c3gc42306a

    Article  CAS  Google Scholar 

  55. Semerci I, Güler F (2018) Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Ind Crops Prod 125:588–595. https://doi.org/10.1016/j.indcrop.2018.09.046

    Article  CAS  Google Scholar 

  56. Merino O, Fundora-Galano G, Luque R, Martínez-Palou R (2018) Understanding microwave-assisted lignin solubilization in protic ionic liquids with multiaromatic imidazolium cations. ACS Sustain Chem Eng 6:4122–4129. https://doi.org/10.1021/acssuschemeng.7b04535

    Article  CAS  Google Scholar 

  57. Rashid T, Kait CF, Regupathi I, Murugesan T (2016) Dissolution of kraft lignin using protic ionic liquids and characterization. Ind Crops Prod 84:284–293. https://doi.org/10.1016/j.indcrop.2016.02.017

    Article  CAS  Google Scholar 

  58. Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49:11121–11130. https://doi.org/10.1021/ie1006596

    Article  CAS  Google Scholar 

  59. Fitzpatrick M, Champagne P, Cunningham MF, Falkenburger C (2012) Application of optical microscopy as a screening technique for cellulose and lignin solvent systems. Can J Chem Eng 90:1142–1152. https://doi.org/10.1002/cjce.20628

    Article  CAS  Google Scholar 

  60. Deguchi S, Tsujii K, Horikoshi K (2008) Crystalline-to-amorphous transformation of cellulose in hot and compressed water and its implications for hydrothermal conversion. Green Chem 10:191–196. https://doi.org/10.1039/B713655B

    Article  CAS  Google Scholar 

  61. Andanson J-H, Bordes E, Devémy J, Leroux F, Padua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538. https://doi.org/10.1039/c3gc42244e

    Article  CAS  Google Scholar 

  62. Abdulkhani A, Hojati Marvast E, Ashori A, Karimi AN (2013) Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr Polym 95:57–63. https://doi.org/10.1016/j.carbpol.2013.02.040

    Article  CAS  PubMed  Google Scholar 

  63. Iglesias M, Gonzalez-Olmos R, Cota I, Medina F (2010) Brønsted ionic liquids: study of physico-chemical properties and catalytic activity in aldol condensations. Chem Eng J 162:802–808. https://doi.org/10.1016/j.cej.2010.06.008

    Article  CAS  Google Scholar 

  64. Cota I, Gonzalez-Olmos R, Iglesias M, Medina F (2007) New short aliphatic chain ionic liquids: synthesis, physical properties, and catalytic activity in aldol condensations. J Phys Chem B 111:12468–12477. https://doi.org/10.1021/jp073963u

    Article  CAS  PubMed  Google Scholar 

  65. Pinkert A, Ang KL, Marsh KN, Pang S (2011) Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids. Phys Chem Chem Phys 13:5136. https://doi.org/10.1039/c0cp02222e

    Article  CAS  PubMed  Google Scholar 

  66. Ghatee MH, Bahrami M, Khanjari N, Firouzabadi H, Ahmadi Y (2012) A functionalized high-surface-energy ammonium-based ionic liquid: experimental measurement of viscosity, density, and surface tension of (2-hydroxyethyl)ammonium formate. J Chem Eng Data 57:2095–2101. https://doi.org/10.1021/je201055w

    Article  CAS  Google Scholar 

  67. Camargo D, Andrade RS, Ferreira GA, Mazzer H, Cardozo-Filho L, Iglesias M (2016) Investigation of the rheological properties of protic ionic liquids. J Phys Org Chem 29:604–612. https://doi.org/10.1002/poc.3553

    Article  CAS  Google Scholar 

  68. Álvarez VH, Mattedi S, Martin-Pastor M, Aznar M, Iglesias M (2011) Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}. J Chem Thermodyn 43:997–1010. https://doi.org/10.1016/j.jct.2011.01.014

    Article  CAS  Google Scholar 

  69. Kurnia KA, Wilfred CD, Murugesan T (2009) Thermophysical properties of hydroxyl ammonium ionic liquids. J Chem Thermodyn 41:517–521. https://doi.org/10.1016/j.jct.2008.11.003

    Article  CAS  Google Scholar 

  70. Yuan XL, Zhang SJ, Lu XM (2007) Hydroxyl ammonium ionic liquids: synthesis, properties, and solubility of so2. J Chem Eng Data 52:596–599. https://doi.org/10.1021/je060479w

    Article  CAS  Google Scholar 

  71. Bicak N (2005) A new ionic liquid: 2-hydroxy ethylammonium formate. J Mol Liq 116:15–18. https://doi.org/10.1016/j.molliq.2004.03.006

    Article  CAS  Google Scholar 

  72. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237. https://doi.org/10.1021/cr068040u

    Article  CAS  PubMed  Google Scholar 

  73. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419. https://doi.org/10.1021/ja035783d

    Article  CAS  PubMed  Google Scholar 

  74. Stoimenovski J, Izgorodina EI, MacFarlane DR (2010) Ionicity and proton transfer in protic ionic liquids. Phys Chem Chem Phys 12:10341–10347. https://doi.org/10.1039/c0cp00239a

    Article  CAS  PubMed  Google Scholar 

  75. Angell CA, Byrne N, Belieres JP (2007) Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. Acc Chem Res 40:1228–1236. https://doi.org/10.1021/ar7001842

    Article  CAS  PubMed  Google Scholar 

  76. Xu W (2003) Solvent-free electrolytes with aqueous solution-like conductivities. Science 302:422–425. https://doi.org/10.1126/science.1090287

    Article  CAS  PubMed  Google Scholar 

  77. Bacarella AL, Grunwald E, Marshall HP, Purlee EL (1955) The potentiometric measurement of acid dissociation constants and pH in the system methanol-water. pka values for carboxylic acids and anilinium ions. J Org Chem 20:747–762. https://doi.org/10.1021/jo01124a007

    Article  CAS  Google Scholar 

  78. Hancock RD (1981) The chelate effect in complexes with ethanolamine. Inorg Chim Acta 49:145–148. https://doi.org/10.1016/S0020-1693(00)90474-2

    Article  CAS  Google Scholar 

  79. Feng L, Chen ZL (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5. https://doi.org/10.1016/j.molliq.2008.06.007

    Article  CAS  Google Scholar 

  80. Hart WES, Harper JB, Aldous L (2015) The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem 17:214–218. https://doi.org/10.1039/c4gc01888e

    Article  CAS  Google Scholar 

  81. Glas D, Van Doorslaer C, Depuydt D et al (2015) Lignin solubility in non-imidazolium ionic liquids. J Chem Technol Biotechnol 90:1821–1826. https://doi.org/10.1002/jctb.4492

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also would like to thank the following national funding agencies FAPESP [2014/21252-0], CNPq [310272/2017-3, 140723/2016-1, 169743/2018-7] and FAEPEX/UNICAMP for financial support. The authors also thank Professor João Coutinho for his kindly suggestion and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana C. da Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 3395 kb)

Supplementary material 2 (DOCX 6721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, R.M., Sosa, F.H.B. & da Costa, M.C. Dissolution of lignocellulosic biopolymers in ethanolamine-based protic ionic liquids. Polym. Bull. 77, 3637–3656 (2020). https://doi.org/10.1007/s00289-019-02929-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02929-2

Keywords

Navigation