Skip to main content
Log in

Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyamide 6 (PA6) is a polymer largely applied in the packing industry; however, it has limitations like high water absorption, notch-sensitive impact and high electrical resistance. Some strategies have been developed aiming to improve these drawbacks, as blending PA6 with other polymers, like linear low-density polyethylene (LLDPE) which is also an electrical insulator. In this work, antistatic packages for the transportation and storage of electronic devices were prepared by mixing PA6 and LLDPE with the addition of carbon black as an antistatic agent to reduce the electrical resistivity of polymers. PA6/LLDPE (50/50) blend-based carbon black composites with different contents of carbon black (5, 10 and 15 wt%) were prepared in a twin screw extruder, and their mechanical, rheological, electrical and permeation properties were studied. Thereby, the effects of the addition of maleic anhydride-grafted LLDPE (LLDPE-g-MA) in the composites were also studied. The addition of LLDPE-g-MA and 5 wt% and 10 wt% of carbon black in the PA6/LLDPE blend resulted in a 130 and 150% increase in impact strength, respectively. Adding 10 wt% of carbon black in the PA6/LLDPE/LLDPE-g-MA blend increased the elastic modulus, reduced the electrical resistivity by 14 decades and also reduced the water vapor permeability, allowing this material to be eligible for use as antistatic packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Okan M, Aydin HM, Barsbay M (2019) Current approaches to waste polymer utilization and minimization: a review. J Chem Technol Biotechnol 94:8–21

    Article  CAS  Google Scholar 

  2. Mesquita AS, de Andrade e Silva LG, de Miranda LF (2018) Mechanical, thermal and electrical properties of polymer (ethylene terephthalate—PET) filled with carbon black. In: Li B et al (eds) Minerals, metals and materials series. Springer, Berlin, pp 605–614

    Google Scholar 

  3. Ulrich RK, Brown WD (2006) Advanced electronic packaging. Wiley-Interscience/IEEE, New York

    Book  Google Scholar 

  4. Dahman SJ (2003) All polymeric compounds: conductive and dissipative polymers in ESD control materials. In: Electrical overstress/electrostatic discharge symposium, Las Vegas, NV, RTP Company

  5. Mojzes Á, Tóth B, Csavajda P (2014) Investigation of an electrostatic discharge protective biodegradable packaging foam in the logistic chain. Logist Sustain Transp 5:25–33. https://doi.org/10.1515/jlst-2015-0004

    Article  Google Scholar 

  6. Anstey A, Codou A, Misra M, Mohanty AK (2018) Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): fractionated crystallization phenomena and mechanical performance. ACS Omega 3:2845–2854. https://doi.org/10.1021/acsomega.7b01569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ksouri I, De Almeida O, Haddar N (2017) Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: physicochemical, mechanical and morphological characterization. J Polym Res 24:133. https://doi.org/10.1007/s10965-017-1292-6

    Article  CAS  Google Scholar 

  8. Aparna S, Purnima D, Adusumalli RB (2018) Effect of compatibilizer on the properties of polyamide 6 blend based carbon fiber reinforced composites. Fibers Polym 19:1335–1346. https://doi.org/10.1007/s12221-018-1009-4

    Article  CAS  Google Scholar 

  9. Das V, Kumar V, Singh A et al (2012) Compatibilization efficacy of LLDPE-g-MA on mechanical, thermal, morphological and water absorption properties of nylon-6/LLDPE blends. Polym Plast Technol Eng 51:446–454. https://doi.org/10.1080/03602559.2011.639840

    Article  CAS  Google Scholar 

  10. Cataño L, Albano C, Karam A, et al (2007) Thermal stability evaluation of PA6/LLDPE/SEBS-g-DEM blends. In: Macromolecular symposia, pp 147–157

  11. Kelar K, Jurkowski B (2000) Preparation of functionalised low-density polyethylene by reactive extrusion and its blend with polyamide 6. Polymer (Guildf) 41:1055–1062. https://doi.org/10.1016/S0032-3861(99)00260-8

    Article  CAS  Google Scholar 

  12. Arrigo R, Dintcheva NT, Nasillo G, Caponetti E (2015) Polyamide/carbonaceous particles nanocomposites fibers: morphology and performances. Polym Compos 36:1020–1028. https://doi.org/10.1002/pc.23441

    Article  CAS  Google Scholar 

  13. Santos MS, Montagna LS, Rezende MC, Passador FR (2018) A new use for glassy carbon: development of LDPE/glassy carbon composites for antistatic packaging applications. J Appl Polym Sci 136:47204. https://doi.org/10.1002/app.47204

    Article  CAS  Google Scholar 

  14. Leboeuf M, Ghamri N, Brulé B et al (2008) Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black. Rheol Acta 47:201–212. https://doi.org/10.1007/s00397-007-0232-5

    Article  CAS  Google Scholar 

  15. Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313

    Article  CAS  Google Scholar 

  16. Breuer O, Tchoudakov R, Narkis M, Siegmann A (1998) Shear rate effect on the resistivity of HIPS/LLDPE/carbon black extrudates. Polym Eng Sci 38:1898–1905. https://doi.org/10.1002/pen.10360

    Article  CAS  Google Scholar 

  17. Zhou P, Yu W, Zhou C et al (2007) Morphology and electrical properties of carbon black filled LLDPE/EMA composites. J Appl Polym Sci 103:487–492. https://doi.org/10.1002/app.25020

    Article  CAS  Google Scholar 

  18. Silva TF, Menezes F, Montagna LS et al (2019) Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites. J Appl Polym Sci 136:47273. https://doi.org/10.1002/app.47273

    Article  CAS  Google Scholar 

  19. Yuan Q, Bateman SA, Wu D (2010) Mechanical and conductive properties of carbon black-filled high-density polyethylene, low-density polyethylene, and linear low-density polyethylene. J Thermoplast Compos Mater 23:459–471. https://doi.org/10.1177/0892705709349318

    Article  CAS  Google Scholar 

  20. Liu M, Horrocks A (2002) Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions. Polym Degrad Stab 75:485–499. https://doi.org/10.1016/S0141-3910(01)00252-X

    Article  CAS  Google Scholar 

  21. Gong J, Niu R, Tian N et al (2014) Combination of fumed silica with carbon black for simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene. Polymer (Guildf) 55:2998–3007. https://doi.org/10.1016/J.POLYMER.2014.05.006

    Article  CAS  Google Scholar 

  22. Gong J, Niu R, Liu J et al (2014) Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. RSC Adv 4:33776–33784. https://doi.org/10.1039/c4ra04623d

    Article  CAS  Google Scholar 

  23. Cheng HKF, Sahoo NG, Pan Y et al (2010) Complementary effects of multiwalled carbon nanotubes and conductive carbon black on polyamide 6. J Polym Sci Part B: Polym Phys 48:1203–1212. https://doi.org/10.1002/polb.22010

    Article  CAS  Google Scholar 

  24. Anjos EGR, Backes EH, Marini J et al (2019) Effect of LLDPE-g-MA on the rheological, thermal, mechanical properties and morphological characteristic of PA6/LLDPE blends. J Polym Res 26:134. https://doi.org/10.1007/s10965-019-1800-y

    Article  CAS  Google Scholar 

  25. ASTM International (2018) ASTM Standard D882, 2018 “Standard test method for tensile properties of thin plastic sheeting”. https://doi.org/10.1520/d0882-18

  26. ASTM International (2006) ASTM Standard D256, 2006, “Standard Test methods for determining the Izod pendulum impact resistance of plastics”. https://doi.org/10.1520/d0256-06a

  27. Wunderlich B (1980) Crystal melting. Academic Press, Cambridge

    Google Scholar 

  28. ASTM International (2016) ASTM Standard E96/E96M, 2016, “Standard test methods for water vapor transmission of materials”. https://doi.org/10.1520/e0096_e0096m-16

  29. Park SJ, Kim BK, Jeong HM (1990) Morphological, thermal and rheological properties of the blends polypropylene/nylon-6, polypropylene/nylon-6/(maleic anhydride-g-polypropylene) and (maleic anhydride-g-polypropylene)/nylon-6. Eur Polym J 26:131–136. https://doi.org/10.1016/0014-3057(90)90176-5

    Article  CAS  Google Scholar 

  30. Kim BK, Park SY, Park SJ (1991) Morphological, thermal and rheological properties of blends: polyethylene/nylon 6, polyethylene/nylon-6/(maleic anhydride-g-polyethylene) and (maleic anhydride-g-polyethylene)/nylon-6. Eur Polym J 27:349–354. https://doi.org/10.1016/0014-3057(91)90186-R

    Article  CAS  Google Scholar 

  31. Gogos CG, Tadmor Z (2014) Principles of polymer processing. Wiley-Interscience, New York

    Google Scholar 

  32. Passador FR, Pessan LA, Rodolfo A Jr (2006) Estado de mistura e dispersão da fase borrachosa em blendas PVC/NBR. Polímeros 16:174–181. https://doi.org/10.1590/S0104-14282006000300005

    Article  CAS  Google Scholar 

  33. Utracki LA, Shi ZH (1992) Development of polymer blend morphology during compounding in a twin-screw extruder. Part I: droplet dispersion and coalescence—a review. Polym Eng Sci 32:1824–1833. https://doi.org/10.1002/pen.760322405

    Article  CAS  Google Scholar 

  34. Penel-Pierron L, Depecker C, Séguéla R, Lefebvre JM (2001) Structural and mechanical behavior of nylon 6 films part I. Identification and stability of the crystalline phases. J Polym Sci Part B: Polym Phys 39:484–495. https://doi.org/10.1002/1099-0488(20010301)39:5%3c484:AID-POLB1022%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

  35. Pantea D, Darmstadt H, Kaliaguine S, Roy C (2003) Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Appl Surf Sci 217:181–193. https://doi.org/10.1016/S0169-4332(03)00550-6

    Article  CAS  Google Scholar 

  36. Huang J-C, Shen H-F, Chu Y-T (1994) Melt viscosity of polycarbonate–polyolefin blends. Adv Polym Technol 13:49–55. https://doi.org/10.1002/adv.1994.060130104

    Article  CAS  Google Scholar 

  37. ANSI (2008) ANSI Standard, ANSI/ESD S541, 2008, “Packaging materials for ESD sensitive items”

  38. Passador FR, Ruvolo-Filho AC, Pessan LA (2016) Structural, thermal, and gas transport properties of HDPE/LLDPE blend-based nanocomposites using a mixture of HDPE-g-MA and LLDPE-g-MA as compatibilizer. Polym Eng Sci 56:765–775. https://doi.org/10.1002/pen.24305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilians Funding Institutions CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Process 405675/2018-6 and 310196/2018-3) and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Process 2016/19978-9) for financial support. The authors also thank Master Polymers for the donation of PA6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Roberto Passador.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.N., dos Anjos, E.G.R., Morgado, G.F.M. et al. Development of antistatic packaging of polyamide 6/linear low-density polyethylene blends-based carbon black composites. Polym. Bull. 77, 3389–3409 (2020). https://doi.org/10.1007/s00289-019-02928-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02928-3

Keywords

Navigation