Skip to main content

Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy

Abstract

Nano-TiO2 nanoparticles were incorporated into thin film nanocomposites (TFN) formed on hollow fiber support membranes composed of a blend of polysulfone and multi-walled carbon nanotubes. Three different TiO2 nanoparticles (0.01%, 0.05% and 0.2% w/v) in the thin film composite were investigated. Formation of the nanocomposite polyamide layer was confirmed by the results of FTIR and scanning electron microscopy. Double-layer capacitance values obtained from electrochemical impedance spectroscopy results showed that effective surface area of the membranes was enhance by the incorporation of nano-TiO2. Nanofiltration membrane performance was examined using solutions of MgSO4 and NaCl under cross-flow system with hollow fiber nanofiltration modules. Fouling of the membrane was evaluated with solutions of humic and tannic acids. The permeate flux of TFN 0.05 composite membranes was improved nearly 12 times with the incorporation of TiO2 with rejections of MgSO4 and NaCl salts of 22% and 5%, respectively. The rejections of the NF membranes for HA and TA were 84% and 74%, respectively, with improved antifouling properties compared to the thin film composite membrane without TiO2, the latter being attributed to increased hydrophilicity of membrane surface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

J :

Permeate flux (L/m2 h)

A m :

Membrane effective area (m2)

\(\Delta W_{\text{feed}}\) :

Weight change of the feed solution (g)

Δt :

Permeation time (h)

R :

Observed rejection ratio (%)

C f :

Salt concentration in the feed (g/L)

C p :

Salt concentration in the permeate (g/L)

A :

Effective membrane area (m2)

TFN 0:

Thin film nanocomposite

TFN 0.01:

Thin film nanocomposite with incorporation of 0.01% TiO2

D eff :

Effective diffusion coefficient

ω*:

Radial frequency

Φ:

The diffusion length (μm)

L :

Effective length of the pores

R d :

Resistance (Ohm)

D e :

Diffusion coefficient of electrons in TFN

D i :

Diffusion coefficient of ions in TFN

ΔP :

The working pressure (Pa)

TFN 0.05:

Thin film nanocomposite with incorporation of 0.05% TiO2

TFN 0.2:

Thin film nanocomposite with incorporation of 0.2% TiO2

References

  1. 1.

    Kwak S-Y, Kim SH, Kim SS (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol 35(11):2388–2394

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Tiraferri A, Kang Y, Giannelis EP, Elimelech M (2012) Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl Mater Interfaces 4:5044

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Tarabara VV, Koyuncu I, Wiesner MR (2004) Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: direct experimental observation of filter cake cross-sections. J Membr Sci 241(1):65–78

    CAS  Article  Google Scholar 

  4. 4.

    Ngaboyamahina E et al (2015) Electrochemical impedance spectroscopy characterization of conducting polymer/TiO2 nanotube array hybrid structures. J Electroanal Chem 737:37–45

    CAS  Article  Google Scholar 

  5. 5.

    Pu P et al (2013) Relation between morphology and conductivity in TiO2 nanotube arrays: an electrochemical impedance spectrometric investigation. J Solid State Electrochem 17(3):817–828

    CAS  Article  Google Scholar 

  6. 6.

    Ngaboyamahina E et al (2014) Photo-assisted electrodeposition of an electrochemically active polypyrrole layer on anatase type titanium dioxide nanotube arrays. Electrochim Acta 129:211–221

    CAS  Article  Google Scholar 

  7. 7.

    Parker CB et al (2012) Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res 27(7):1046–1053

    CAS  Article  Google Scholar 

  8. 8.

    Stoner BR et al (2011) Graphenated carbon nanotubes for enhanced electrochemical double layer capacitor performance. Appl Phys Lett 99(18):183104

    Article  CAS  Google Scholar 

  9. 9.

    Zhao K, Li Y (2006) Dielectric characterization of a nanofiltration membrane in electrolyte solutions: its double-layer structure and ion permeation. J Phys Chem B 110(6):2755–2763

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Zhao K, Jia J (2012) Dielectric analysis of multi-layer structure of nanofiltration membrane in electrolyte solutions: ion penetrability, selectivity, and influence of pH. J Colloid Interface Sci 386(1):16–27

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Bi R et al (2018) Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. J Membr Sci 553:17–24

    CAS  Article  Google Scholar 

  12. 12.

    Ormanci-Acar T et al (2018) Fabrication and characterization of temperature and pH resistant thin film nanocomposite membranes embedded with halloysite nanotubes for dye rejection. Desalination 429:20–32

    CAS  Article  Google Scholar 

  13. 13.

    Khorshidi B et al (2018) Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci Rep 8:784

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Lee HS et al (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1–3):48–56

    CAS  Article  Google Scholar 

  15. 15.

    Kim SJ et al (2016) Effective incorporation of TiO2 nanoparticles into polyamide thin-film composite membranes. J Appl Polym Sci 133(18):43383

    Article  CAS  Google Scholar 

  16. 16.

    Pourjafar S, Rahimpour A, Jahanshahi M (2012) Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. J Ind Eng Chem 18(4):1398–1405

    CAS  Article  Google Scholar 

  17. 17.

    Genceli EA et al (2017) Effects of carboxylated multi-walled carbon nanotubes having different outer diameters on hollow fiber ultrafiltration membrane fabrication and characterization by electrochemical impedance spectroscopy. Polym Bull 75:2431–2457

    Article  CAS  Google Scholar 

  18. 18.

    Sengur R et al (2015) Fabrication and characterization of hydroxylated and carboxylated multiwalled carbon nanotube/polyethersulfone (PES) nanocomposite hollow fiber membranes. Desalination 359:123–140

    CAS  Article  Google Scholar 

  19. 19.

    Bisquert J (2000) Influence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2(18):4185–4192

    CAS  Article  Google Scholar 

  20. 20.

    Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 242(1):149–167

    CAS  Article  Google Scholar 

  21. 21.

    Wei X et al (2013) Characterization and application of a thin-film composite nanofiltration hollow fiber membrane for dye desalination and concentration. Chem Eng J 223:172–182

    CAS  Article  Google Scholar 

  22. 22.

    Mansourpanah Y, Madaeni S, Rahimpour A (2009) Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J Membr Sci 343(1–2):219–228

    CAS  Article  Google Scholar 

  23. 23.

    Zhang Q et al (2017) Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in situ generated TiO2 nanoparticles. Appl Surf Sci 410:494–504

    CAS  Article  Google Scholar 

  24. 24.

    Misdan N et al (2013) Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics. Desalination 329:9–18

    CAS  Article  Google Scholar 

  25. 25.

    Veerababu P et al (2014) Limiting thickness of polyamide–polysulfone thin-film-composite nanofiltration membrane. Desalination 346:19–29

    CAS  Article  Google Scholar 

  26. 26.

    Li X et al (2014) Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. J Membr Sci 471:118–129

    CAS  Article  Google Scholar 

  27. 27.

    Liu Y, Koops GH, Strathmann H (2003) Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution. J Membr Sci 223(1):187–199

    CAS  Article  Google Scholar 

  28. 28.

    Bai L et al (2018) Incorporation of cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC) nanofiltration membranes for enhanced separation performance and antifouling properties. Environ Sci Technol 52:11178–11187

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Bano S et al (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3(5):2065–2071

    CAS  Article  Google Scholar 

  30. 30.

    Han B et al (2015) Porous nickel oxide nanotube arrays supported on carbon fiber paper: synergistic effect on pseudocapacitive behavior. New J Chem 39(3):1996–2003

    CAS  Article  Google Scholar 

  31. 31.

    Balakrishnan A, Subramanian K (2014) Nanostructured ceramic oxides for supercapacitor applications. CRC Press, Boca Raton

    Book  Google Scholar 

  32. 32.

    Vorotyntsev M, Daikhin L, Levi M (1994) Modelling the impedance properties of electrodes coated with electroactive polymer films. J Electroanal Chem 364(1–2):37–49

    CAS  Article  Google Scholar 

  33. 33.

    Madhoun IT (2017) Measuring geometrical tortuosity of porous media from 3D computed tomography images (Master's thesis)

  34. 34.

    Armstrong R, Lindholm B, Sharp M (1986) Impedance characteristics of a modified electrode. J Electroanal Chem Interfacial Electrochem 202(1–2):69–74

    CAS  Article  Google Scholar 

  35. 35.

    Peyravi M et al (2014) Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem Eng J 241:155–166

    CAS  Article  Google Scholar 

  36. 36.

    El-Aassar AMA (2015) Improvement of reverse osmosis performance of polyamide thin-film composite membranes using TiO2 nanoparticles. Desalin Water Treat 55(11):2939–2950

    CAS  Google Scholar 

  37. 37.

    Kim SH et al (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165

    CAS  Article  Google Scholar 

  38. 38.

    Lee SJ et al (2000) Adsorption characteristics of 4-dimethylaminobenzoic acid on silver and titania: diffuse reflectance infrared Fourier transform spectroscopy study. Vib Spectrosc 24(2):265–275

    CAS  Article  Google Scholar 

  39. 39.

    Reid C, Breton E (1959) Water and ion flow across cellulosic membranes. J Appl Polym Sci 1(2):133–143

    CAS  Article  Google Scholar 

  40. 40.

    Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, Oxford

    Google Scholar 

  41. 41.

    Emadzadeh D et al (2014) A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem Eng J 237:70–80

    CAS  Article  Google Scholar 

  42. 42.

    Vrijenhoek EM, Waypa JJ (2000) Arsenic removal from drinking water by a “loose” nanofiltration membrane. Desalination 130(3):265–277

    CAS  Article  Google Scholar 

  43. 43.

    Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39(1):1–42

    CAS  Article  Google Scholar 

  44. 44.

    Her N et al (2007) Identification of nanofiltration membrane foulants. Water Res 41(17):3936–3947

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Owusu-Agyeman I et al (2017) Implications of humic acid, inorganic carbon and speciation on fluoride retention mechanisms in nanofiltration and reverse osmosis. J Membr Sci 528:82–94

    CAS  Article  Google Scholar 

  46. 46.

    Braeken L et al (2005) Influence of hydrophobicity on retention in nanofiltration of aqueous solutions containing organic compounds. J Membr Sci 252(1):195–203

    CAS  Article  Google Scholar 

  47. 47.

    Bae T-H, Tak T-M (2005) Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J Membr Sci 249(1–2):1–8

    CAS  Google Scholar 

  48. 48.

    Chu KH et al (2016) Evaluation of humic acid and tannic acid fouling in graphene oxide-coated ultrafiltration membranes. ACS Appl Mater Interfaces 8(34):22270–22279

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Paul DR (1972) The role of membrane pressure in reverse osmosis. J Appl Polym Sci 16(3):771–782

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to The Scientific and Research Council of Turkey (TUBITAK) for the financial support under grant (Project No. 113Y359). GMUB would like to thank for funding provided by TUBITAK-BIDEB 2214-A International Research Fellowship Programme.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mark Wiesner or Ismail Koyuncu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3318 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urper-Bayram, G.M., Sayinli, B., Bossa, N. et al. Thin film nanocomposite nanofiltration hollow fiber membrane fabrication and characterization by electrochemical impedance spectroscopy. Polym. Bull. 77, 3411–3427 (2020). https://doi.org/10.1007/s00289-019-02905-w

Download citation

Keywords

  • Hollow fiber
  • Nanofiltration
  • EIS
  • TiO2