Skip to main content
Log in

Binary mixtures of anionic double-chain sulfonate emulsifiers in VCM emulsion polymerization with high solid content: effect of emulsifier’s combination ratio and concentration

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Binary mixtures of anionic double-chain sulfonate emulsifiers, sodium di-isodecyl sulfosuccinate and sodium pentadecan-sulfonate (SPS) were employed in batch reactor at different combination ratios and concentration for vinyl chloride emulsion polymerization. Reaction performances were evaluated by monitoring conversion rate and molecular weight by K-value parameter. Particle size and its distribution were investigated as a criterion for particle nucleation and the growing process by calculating the number of latex particles and the average number of growing chains per particle, respectively. The final latexes were evaluated by means of the coarse matter content as a qualitative character of the latex. The results showed that the overall reaction rate increases by high amount of SPS. Also, by increasing SPS content in binary mixture, coarse particle formation decreased and latex stability and particle size distribution increased. Furthermore, it has been found that the particle size was nonlinearly dependent on the combined ratio and amount of emulsifier and has shown a minimum within the scope of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A min :

Minimum area per head group

C :

Concentration of PVC in cyclohexanone for K-value determination

C E :

Concentration of emulsifier in water

CMCL :

First minimum of CMC region

CMCH :

First maximum of CMC region

C MP :

Overall monomer concentration in the polymer particles at interval II

Ć MP :

Overall monomer concentration in the polymer particles at interval III

C M,0 :

Initial monomer concentration (moles per unit volume of the continuous phase)

d i :

Diameter of particle with index i

\(\bar{d}_{\text{pswol}}\) :

Particles diameter swelled with monomer

\(\bar{d}_{\text{v}}\) :

Volume average particle diameter

\(\bar{d}_{\text{w}}\) :

Weight average particle diameter

EM:

Weight ratio of emulsifier to VCM in percentage

K p :

Coefficient of propagation rate

K-value:

A measure of molecular weight for PVC

M M :

Molecular weight of the monomer

M/W:

Weight ratio of monomer to water

n :

Number of species formed in solution considering the dissociation per monomer

\(\bar{n}\) :

Average number of growing chain per particle

n i :

Number of particles with diameter di

N p :

Number of latex particles per unit volume of the aqueous phase

N pm :

Number of latex particles per unit mass of the polymer

N av :

Avogadro’s number

P :

Pressure

PDI:

Particle diameter polydispersity index

P/W:

Weight ratio of polymer to water

R :

Gas constant

R p :

Polymerization rate per unit volume of the continuous phase

SC:

Solid content

SC (initial):

Solid content at the beginning of reaction

SC (final):

Solid content at the end of reaction

SC (t):

Solid content at time t

t 0 :

Efflux time of the pure solvent

t E :

Efflux time of the solution

T :

Temperature

X c :

Critical conversion

Xov(t):

Overall mass conversion at time t

κ :

Conductivity

Γmax :

Surface excess concentration

γ :

Surface tension

ρ P :

Average density of the polymer

ρ W :

Density of water

ρ m :

Density of monomer

θ(t):

Overall molar conversion at time t

E:

Emulsifier

M:

Monomer

p:

Polymer

w:

Water

CMC:

Critical micelle concentration

DM water:

Demineralized water

E-PVC:

PVC produced by emulsion polymerization

K-value:

A measure of molecular weight for PVC

PSD:

Particle size distribution

PVC:

Poly (vinyl chloride)

SDBS:

Sodium dodecylbenzenesulfonate

SDIDS:

Sodium di-isodecyl sulfosuccinate

SDS:

Sodium dodecyl sulfate

SEM:

Scanning electron microscopy

SPS:

Sodium pentadecan-sulfonate

VCM:

Vinyl chloride monomer

VR:

Viscosity ratio

References

  1. Shahbazian A, Navarchian AH, Pourmehr M (2009) Application of Taguchi method to investigate the effects of process factors on the performance of batch emulsion polymerization of vinyl chloride. J Appl Polym Sci 113:2739–2746. https://doi.org/10.1002/app.30194

    Article  CAS  Google Scholar 

  2. Pourmehr M, Navarchian AH (2009) Batch emulsion polymerization of vinyl chloride: application of experimental design to investigate the effects of operating variables on particle size and particle size distribution. J Appl Polym Sci 111:338–347. https://doi.org/10.1002/app.29079

    Article  CAS  Google Scholar 

  3. Chen LJ, Lin SY, Chern CS, Wu SC (1997) Critical micelle concentration of mixed surfactant SDS/NP(EO)40 and its role in emulsion polymerization. Colloids Surf A Physicochem Eng Asp 122:161–168. https://doi.org/10.1016/S0927-7757(96)03851-4

    Article  CAS  Google Scholar 

  4. Garcia JC, Marcilla A (1998) Influence of the type of resin in the gelation and fusion processes of PVC plastisols. Polymer 39(2):431–435. https://doi.org/10.1016/S0032-3861(97)00297-8

    Article  CAS  Google Scholar 

  5. Zadhoush A, Alsharif MA, Esmailzadeh-Boukany P (2004) The influence of k-value and plasticizer type on the rheological behaviour of plastisol used in coated fabrics. Iran Polym J 13(5):371–379

    CAS  Google Scholar 

  6. Peggion E, Testa F, Talamini G (1964) A kinetic study on the emulsion polymerization of vinyl chloride. Makromol Chem 71:173–183. https://doi.org/10.1002/macp.1964.020710112

    Article  CAS  Google Scholar 

  7. Vidottoa G, Crosato-Arnaldi A, Talamini G (1970) Kinetic study of emulsion polymerization of vinyl chloride. Die Makrormol Chem 134:41–55. https://doi.org/10.1002/macp.1970.021340104

    Article  Google Scholar 

  8. Ugelstad J, Mork PC, Dahl P, Rangnes P (1969) A kinetic investigation of the emulsion polymerization of vinyl chloride. J Polym Sci Part C 27:49–68. https://doi.org/10.1002/polc.5070270106

    Article  Google Scholar 

  9. Karakag G, Orbey N (1989) An experimental investigation of poly(vinyl chloride) emulsion polymerization: effect of initiator and emulsifier concentrations on polymerization kinetics and product particle size. Br Polym J 21:399–406. https://doi.org/10.1002/pi.4980210508

    Article  Google Scholar 

  10. Boieshan V (1990) Formation of latex particles during the batch emulsion polymerization of vinyl chloride. Acta Polym 41(5):298–303. https://doi.org/10.1002/actp.1990.010410508

    Article  CAS  Google Scholar 

  11. Alvarez AE, Ressia JA, Aparicio LV, Sarmoria C, Valles EM, Brandolin A (2001) Batch emulsion polymerization of vinyl chloride: effect of operating variables on reactor performance. Lat Am Appl Res 31:317–323

    CAS  Google Scholar 

  12. Vale HM, McKenna TFL (2008) Particle formation in vinyl chloride emulsion polymerization. Experimental study. Ind Eng Chem Res 47:8107–8118. https://doi.org/10.1021/ie0715153

    Article  CAS  Google Scholar 

  13. Pakdel AS, Saeb MR, Abedini H, Khonakdar HA, Boldt R (2014) A combinatorial approach to evaluation of monomer conversion and particle size distribution in vinyl chloride emulsion polymerization. Polym Bull 71:2487–2506. https://doi.org/10.1007/s00289-014-1203-5

    Article  CAS  Google Scholar 

  14. Testa F, Vianello G (1969) Applicability of HLB system in selecting emulsifiers for emulsion polymerization of vinyl chloride. J Polym Sci Part C 27:69–76. https://doi.org/10.1002/polc.5070270107

    Article  Google Scholar 

  15. Anderson DF, Farrington SD (1979) Emulsion polymerization of vinyl chloride polymers using mixed emulsifier system. United States Patent 4(150):210

    Google Scholar 

  16. Jalilian SM, Ziaee F (2011) Vinyl chloride emulsion polymerization reaction: effect of various formulations. Iran J Polym Sci Technol 24(3):205–214. https://doi.org/10.22063/JIPST.2013.591

    Article  CAS  Google Scholar 

  17. Tomas A, Gil MH, Bordado JC, Goncalves P, Rodrigues P (2009) Preparation of poly(vinyl chloride) latexes using a dual surfactant system: the effect in the particle size distribution. J Appl Polym Sci 112:1416–1424. https://doi.org/10.1002/app.29509

    Article  CAS  Google Scholar 

  18. Pham VH, Lee YH, Lee DJ, Chung JS (2009) Influence of emulsifiers on particle size and particle size distribution of PVC latex synthesized by miniemulsion polymerization. Korean J Chem Eng 26(6):1585–1590. https://doi.org/10.1007/s11814-009-0278-4

    Article  CAS  Google Scholar 

  19. Nakajima N, Harrelly ER (2001) Rheology of PVC plastisol: particle size distribution and viscoelastic properties. J Colloid Interface Sci 238:105–115. https://doi.org/10.1006/jcis.2001.7468

    Article  CAS  PubMed  Google Scholar 

  20. McKenna TFL, Pascal T, Lys T (2013) High-solid-content emulsions of pvc: scale-down of an industrial process for enhanced understanding of particle formation part 1: introduction and scale-down. Chem Eng Technol 36(7):1165–1170. https://doi.org/10.1002/ceat.201300045

    Article  CAS  Google Scholar 

  21. McKenna TFL, Pascal T, Lys T (2013) High-solid-content emulsions of pvc: scale-down of an industrial process for enhanced understanding of particle formation part 3: production of bimodal latexes. Chem Eng Technol 36(7):1179–1186. https://doi.org/10.1002/ceat.201300048

    Article  CAS  Google Scholar 

  22. Boutti S, Graillat C, McKenna TF (2005) High solids content emulsion polymerisation without intermediate seeds. Part II. In situ generation of bimodal lattices. Polymer 46:1211–1222. https://doi.org/10.1016/j.polymer.2004.11.044

    Article  CAS  Google Scholar 

  23. Guyot A, Chu F, Schneider M, Graillat C, McKenna TF (2002) High solid content latexes. Prog Polym Sci 27:1573–1615. https://doi.org/10.1016/S0079-6700(02)00014-X

    Article  CAS  Google Scholar 

  24. Pakdel AS, Behbahani MR, Saeb MR, Khonakdar HA, Abedini H, Moghri M (2015) Evolution of vinyl chloride conversion below critical micelle concentration: a response surface analysis. J Vinyl Addit Technol 21(3):157–165. https://doi.org/10.1002/vnl.21352

    Article  CAS  Google Scholar 

  25. Hoechst AC (1975) Process for the continuous manufacture of polymers and copolymers of vinyl chloride. London Office Patent No. 1,521,426

  26. Nilsson H, Norviit T, Silvegren C, Tornell B (2009) Suspension stabilizers for pvc production II: drop size distribution. J Vinyl Technol 7(3):119–122. https://doi.org/10.1002/vnl.730070307

    Article  Google Scholar 

  27. Mahdavian AR, Abdollahi M (2004) Investigation into the effect of carboxylic acid monomer on particle nucleation and growth in emulsifier-free emulsion copolymerization of styrene–butadiene–acrylic acid. Polymer 45:3233–3239. https://doi.org/10.1016/Jpolymer.2004.03.019

    Article  CAS  Google Scholar 

  28. Abdollahi M, Sharifpour M (2007) Effect of carboxylic acid monomer and butadiene on particle growth in the emulsifier-free emulsion copolymerization of styrene-butadiene-carboxylic acid monomer. Polymer 48:2035–2045. https://doi.org/10.1016/Jpolymer.2007.02.018

    Article  CAS  Google Scholar 

  29. Unzueta E, Forcada J (1995) Semicontinuous emulsion copolymerization of methyl methacrylate and n-butyl acrylate: 1. Effect of mixed emulsifiers in seeded polymerization. Polymer 36(5):1045–1052. https://doi.org/10.1016/0032-3861(95)93606-M

    Article  CAS  Google Scholar 

  30. Vale HM, McKenna TF (2009) Particle formation in vinyl chloride emulsion polymerization: reaction modeling. Ind Eng Chem Res 48:5193–5210. https://doi.org/10.1021/ie801406n

    Article  CAS  Google Scholar 

  31. Miqan SN, Farshchi-Tabrizi F, Abedini H (2015) Study of several approaches for predicting electrical conductivity of sodium-dodecyl-sulfate solution in the presence of Na2CO3 and KPS. J Mol Liq 201:59–67. https://doi.org/10.1016/Jmolliq.2014.11.018

    Article  Google Scholar 

  32. Miqan SN, Farshchi-Tabrizi F, Abedini H, Atashy-Kashi H (2013) Estimation of micellization parameters of sds in the presence of some electrolytes for emulsion polymerization systems. J Surfactants Deterg 16:271–278. https://doi.org/10.1007/s11743-012-1389-1

    Article  CAS  Google Scholar 

  33. Manabe M, Kawamura H, Kameyama K (2011) Premicelle formation of double-chain surfactants and bile salts in the neighborhood of the CMC region: application of a differential conductivity technique to the determination of micellization parameters. J Oleo Sci 60(10):515–525. https://doi.org/10.5650/jos.60.515

    Article  CAS  PubMed  Google Scholar 

  34. Javadian S, Gharibi H, Fallah HT (2010) Adsorption and micellar properties of binary ionic/nonionic surfactant mixtures in Ethylene Glycol + Water. J Chem Eng Data 55:1122–1130. https://doi.org/10.1021/je900564p

    Article  CAS  Google Scholar 

  35. Stephan P et al (2010) VDI heat atlas. In: Mersmann A (ed) Production and mechanical destruction of foams, 2nd edn. Springer, Berlin, p 1255

    Google Scholar 

  36. Bakshi MS, Sachar S, Mahajan N, Kaur I, Kaur G, Singh N, Sehgal P, Doe H (2002) Mixed-micelle formation by strongly interacting surfactant binary mixtures: effect of head-group modification. Colloid Polym Sci 280:990–1000. https://doi.org/10.1007/s00396-002-0717-9

    Article  CAS  Google Scholar 

  37. Mahajan RK, Nandni D (2012) Micellization and phase behavior of binary mixtures of anionic and nonionic surfactants in aqueous media. Ind Eng Chem Res 51:3338–3349. https://doi.org/10.1021/ie202463w

    Article  CAS  Google Scholar 

  38. Xie TY, Hamielec AE, Wood PE, Woods DR (1991) Suspension, bulk, and emulsion polymerization of vinyl chloride-mechanism, kinetics, and reactor modelling. J Vinyl Technol 13(1):2–25. https://doi.org/10.1002/vnl.730130103

    Article  Google Scholar 

  39. Friis N, Hamielec AE (1975) Kinetics of vinyl chloride and vinyl acetate emulsion polymerization. J Appl Polym Sci 19:97–113. https://doi.org/10.1002/app.1975.070190108

    Article  CAS  Google Scholar 

  40. Svetly J, Lukai R, Kolinsky M (1979) Particle size of poly (vinyl chloride) latices and rheology of poly (vinyl chloride) pastes. Makromol Chem 180:1346–1363. https://doi.org/10.1002/polc.507033011

    Article  Google Scholar 

  41. Capek I (1995) Kinetics of the free-radical emulsion polymerization of vinyl chloride. Adv Polym Sci 120:135–205. https://doi.org/10.1007/3-540-58704-7_3

    Article  CAS  Google Scholar 

  42. Suenaga Y, Akimotob A (1999) Particle size control of PVC. Colloids Surf A Physicochem Eng Asp 153:321–323. https://doi.org/10.1016/S0927-7757(98)00453-1

    Article  CAS  Google Scholar 

  43. Saeki Y, Emura T (2002) Technical progresses for PVC production. Prog Polym Sci 27:2055–2131. https://doi.org/10.1016/S0079-6700(02)00039-4

    Article  CAS  Google Scholar 

  44. Pepperl G (2002) Molecular weight distribution of commercial emulsion grade PVC. J Vinyl Add Technol 8(3):209–213. https://doi.org/10.1002/vnl.10364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Arvand Petrochemical Company, under Project No. 0873229604, and Iran Polymer and Petrochemical Institute (IPPI) (Project No. 43751113). The authors would like to thank Dr. A. Nodehi from the department of polymerization engineering, Iran Polymer and Petrochemical Institute (IPPI) for his helpful discussions and APC colleagues A. Alemohammad and J. Sharifi for their sincere aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nekoomanesh Haghighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi Akerdi, A., Nekoomanesh Haghighi, M. Binary mixtures of anionic double-chain sulfonate emulsifiers in VCM emulsion polymerization with high solid content: effect of emulsifier’s combination ratio and concentration. Polym. Bull. 77, 2697–2718 (2020). https://doi.org/10.1007/s00289-019-02879-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02879-9

Keywords

Navigation