Skip to main content
Log in

Novel Synthesis Method and Characterization of Poly(vinyl acetate-butyl acrylate) Latex Particles: Effect of Silanol-Terminated Poly(dimethylsiloxane) Surfactant on the Seeded Emulsion Copolymerization

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

In a conventional semi-batch seeded emulsion copolymerization of vinyl acetate/butyl acrylate (VA/BA) using hybrid surfactants namely, dioctyl sulfosuccinate (DOSS) as an anionic surfactant, nonylphenol ethoxylate (KENON 30) as a non-ionic type, and polydimethylsiloxane surfactant (having hydrophilic silanol-terminated, called PDMS). The effect of PDMS on the properties of the latex synthesized was investigated by measuring solid content, viscosity, colloidal stability, particle size distributions of the base latex, viscosity average molecular weight (\( \bar{M}_{\text{v}} \)) of the copolymer, latex particle morphology, glass transition temperature (T g) of a copolymer and thermal gravimetric analysis (TGA). Particle size of the base latex decreases (Z-average from 246.48 to 143.69 nm) upon increasing the amount of PDMS surfactant in the recipe (up to 6 wt%). The presence of PDMS surfactant in the hybrid surfactants led to a significant increase in the solid content (from 48.71 to 51.31 wt%), viscosity (from 334 to 806 centipoise, cp) and \( \bar{M}_{\text{v}} \) (from 1.91 × 105 to 2.34 × 105 g mol−1). Thermal stability and T g of the copolymer were increased with addition of PDMS surfactant (thermal stability from 344.77 to 389.81 °C and T g from −20.7 to 21.7 °C). The colloidal stability evaluated using the electrolyte addition method was improved with addition of PDMS surfactant. The uniform morphological structure of the final particle is the main effect of using PDMS in the hybrid surfactants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Khanjani J, Zohuri GH, Gholami M, Shojaei B, Dalir R. Emulsion semi-batch terpolymerization process using hybrid emulsifiers for synthesizing new emulsion pressure sensitive adhesives (EPSAs). J Adhes. 2014;90(2):174–94.

    Article  CAS  Google Scholar 

  2. Anderson CD, Daniels ES. Emulsion polymerisation and latex applications. iSmithers Rapra Publishing; 2003.

  3. Chiozza F, Toniolo F, Pizzo B. Effects of radio frequency and heat on wood bonding with a poly(vinyl acetate) dispersion adhesive. J Appl Polym Sci. 2013;129(3):1157–69.

    Article  CAS  Google Scholar 

  4. Landete-Ruiz MD, Martín-Martínez JM. Improvement of adhesion and paint ability of EVA copolymers with different vinyl acetate contents by treatment with UV-ozone. Int J Adhes Adhes. 2015;58:34–43.

    Article  CAS  Google Scholar 

  5. Eliseeva VI, Ivanchev S, Kuchanov S, Lebedev A. Emulsion polymerization and its applications in industry. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  6. Karacetin G, Sarac A, editors. Semicontinuous emulsion copolymerization of vinyl acetate and butyl acrylate with nonionic surfactants (Triton X Series). Macromolecular symposia. Wiley; 2015.

  7. Yamak HB, Yıldırım H. Improvement of film properties of vinyl acetate based emulsion polymers by using different types of maleic acid diesters. Prog Org Coat. 2013;76(12):1874–8.

    Article  CAS  Google Scholar 

  8. Shaffei K, Moustafa A, Hamed A. The emulsion polymerization of each of vinyl acetate and butyl acrylate monomers using bis (2-ethylhexyl) maleate for improving the physicomechanical properties of paints and adhesive films. Int J Polym Sci. 2009. doi:10.1155/2009/731971.

    Google Scholar 

  9. Malshe VC, Sikchi M. Basics of paint technology part I. Malshe: Prakash C; 2008.

    Google Scholar 

  10. Fowler CI, Muchemu CM, Miller RE, Phan L, O’Neill C, Jessop PG, et al. Emulsion polymerization of styrene and methyl methacrylate using cationic switchable surfactants. Macromolecules. 2011;44(8):2501–9.

    Article  CAS  Google Scholar 

  11. Zhang Q, Wang W-J, Lu Y, Li B-G, Zhu S. Reversibly coagulatable and redispersible polystyrene latex prepared by emulsion polymerization of styrene containing switchable amidine. Macromolecules. 2011;44(16):6539–45.

    Article  CAS  Google Scholar 

  12. Fowler CI, Jessop PG, Cunningham MF. Aryl amidine and tertiary amine switchable surfactants and their application in the emulsion polymerization of methyl methacrylate. Macromolecules. 2012;45(7):2955–62.

    Article  CAS  Google Scholar 

  13. Chenal M, Bouteiller L, Rieger J. Ab initio RAFT emulsion polymerization of butyl acrylate mediated by poly(acrylic acid) trithiocarbonate. Polym Chem. 2013;4(3):752–62.

    Article  CAS  Google Scholar 

  14. Tadros TF. Emulsion formation and stability. New York: Wiley; 2013.

    Book  Google Scholar 

  15. Fan F, Xia Z, Li Q, Li Z, Chen H. Thermal stability of phosphorus-containing styrene–acrylic copolymer and its fire retardant performance in waterborne intumescent coatings. J Therm Anal Calorim. 2013;114(3):937–46.

    Article  CAS  Google Scholar 

  16. Chuang C-S, Yang T-H, Tsai K-C, Tseng T-Y, Wang M-K. Fire retardancy and CO/CO2 emission of intumescent coatings on thin plywood panel with waterborne vinyl acetate-acrylic resin. Wood Sci Technol. 2013;47(2):353–67.

    Article  CAS  Google Scholar 

  17. Chuang C-S, Tsai K-C, Wang M-K, Ou C-C, Ko C-H, Shiau L. Effects of intumescent formulation for acrylic-based coating on flame-retardancy of painted red lauan (Parashorea spp.) thin plywood. Wood Sci Technol. 2008;42(7):593–607.

    Article  CAS  Google Scholar 

  18. Pintus V, Ploeger R, Chiantore O, Wei S, Schreiner M. Thermal analysis of the interaction of inorganic pigments with p (nBA/MMA) acrylic emulsion before and after UV ageing. J Therm Anal Calorim. 2013;114(1):33–43.

    Article  CAS  Google Scholar 

  19. Wang T, Shi S, Yang F, Zhou L, Kuroda S. Poly(methyl methacrylate)/polystyrene composite latex particles with a novel core/shell morphology. J Mater Sci. 2010;45(12):3392–5.

    Article  CAS  Google Scholar 

  20. Ji J, Shu S, Wang F, Li Z, Liu J, Song Y, et al. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability. Nanoscale Res Lett. 2014;9(1):1–9.

    Article  Google Scholar 

  21. Ha ST, Park OO, Im SH. Size control of highly monodisperse polystyrene particles by modified dispersion polymerization. Macromol Res. 2010;18(10):935–43.

    Article  CAS  Google Scholar 

  22. Engberts JB. Applied surfactants: principles and applications. Von Tharwat F. Tadros. Angew Chem. 2005;117(37):6072.

    Article  Google Scholar 

  23. Schramm LL, Stasiuk EN, Marangoni DG. 2 Surfactants and their applications. Annu Rep Sect C Phys Chem. 2003;99:3–48.

    Article  CAS  Google Scholar 

  24. De S, Malik S, Ghosh A, Saha R, Saha B. A review on natural surfactants. RSC Adv. 2015;5(81):65757–67.

    Article  CAS  Google Scholar 

  25. Naghash HJ, Akhtarian R, Iravani M. Synthsis and properties of polyvinyl acetate emulsion copolymers by three novel non-ionic functional polyurethane surfactants. Korean J Chem Eng. 2014;31(7):1281–7.

    Article  CAS  Google Scholar 

  26. Farías-Cepeda L, Herrera-Ordonez J, Saldívar-Guerra E. On the kinetics and particle size polydispersity of the styrene emulsion polymerization using aerosol MA80 and sodium dodecyl sulfate as surfactants. Colloid Polym Sci. 2010;288(14–15):1401–9.

    Article  Google Scholar 

  27. Yang J, Zhu Y, Zhu J, Liu W, Zhou M, Zhi L, et al. Influences of maleic reactive surfactants with different EO chain lengths on the properties of the acrylate latices. J Coat Technol Res. 2015;12(6):1041–52.

    Article  CAS  Google Scholar 

  28. Ovando-Medina VM, Peralta RD, Mendizábal E, Martínez-Gutiérrez H, Corona-Rivera MA. Microemulsion copolymerization of vinyl acetate and butyl acrylate using a mixture of anionic and non-ionic surfactants. Polym Bull. 2011;66(1):133–46.

    Article  CAS  Google Scholar 

  29. Raduan NH, Horozov TS, Georgiou TK. “Comb-like” non-ionic polymeric macrosurfactants. Soft Matter. 2010;6(10):2321–9.

    Article  CAS  Google Scholar 

  30. Tadros T. Polymeric surfactants in disperse systems. Adv Coll Interface Sci. 2009;147:281–99.

    Article  Google Scholar 

  31. Durand A, Marie E. Macromolecular surfactants for miniemulsion polymerization. Adv Coll Interface Sci. 2009;150(2):90–105.

    Article  CAS  Google Scholar 

  32. Porter MR. Handbook of surfactants. Berlin: Springer; 2013.

    Google Scholar 

  33. Hill RM. Silicone surfactants. Boca Raton: CRC Press; 1999.

    Google Scholar 

  34. Somasundaran P, Mehta SC, Purohit P. Silicone emulsions. Adv Coll Interface Sci. 2006;128:103–9.

    Article  Google Scholar 

  35. Owen MJ, Dvornic PR. Silicone surface science. Adv Silicon Sci. 2012:374.

  36. Sakai K, Ikeda R, Sharma SC, Shrestha RG, Ohtani N, Yoshioka M, et al. Active interfacial modifier: stabilization mechanism of water in silicone oil emulsions by peptide–silicone hybrid polymers. Langmuir. 2010;26(8):5349–54.

    Article  CAS  Google Scholar 

  37. Nazir H, Zhang W, Liu Y, Chen X, Wang L, Naseer M, et al. Silicone oil emulsions: strategies to improve their stability and applications in hair care products. Int J Cosmet Sci. 2014;36(2):124–33.

    Article  CAS  Google Scholar 

  38. Aramaki K, Olsson U. Self-diffusion study of micelles in poly(oxyethylene)–polydimethylsiloxane diblock copolymer and poly(oxyethylene) alkyl ether systems. J Colloid Interface Sci. 2006;300(1):354–60.

    Article  CAS  Google Scholar 

  39. Sharma SC, Tsuchiya K, Sakai K, Sakai H, Abe M, Komura S, et al. Formation and characterization of microemulsions containing polymeric silicone. Langmuir. 2008;24(15):7658–62.

    Article  CAS  Google Scholar 

  40. Walderhaug H. Structures in a microemulsion system of an ethoxylated polymethylsiloxane surfactant, water, and oil studied by NMR self-diffusion measurements. J Phys Chem B. 2007;111(33):9821–7.

    Article  CAS  Google Scholar 

  41. Kumar A, Uddin MH, Kunieda H, Furukawa H, Harashima A. Solubilization enhancing effect of AB-type silicone surfactants in microemulsions. J Dispers Sci Technol. 2001;22(2–3):245–53.

    Article  CAS  Google Scholar 

  42. Jakobs B, Sottmann T, Strey R, Allgaier J, Willner L, Richter D. Amphiphilic block copolymers as efficiency boosters for microemulsions. Langmuir. 1999;15(20):6707–11.

    Article  CAS  Google Scholar 

  43. Hou A, Chen S. Preparation of microemulsions of the polysiloxanes modified with different amines and their effect on the color shade of dyed cellulose. J Dispersion Sci Technol. 2009;31(1):102–7.

    Article  Google Scholar 

  44. Katayama H, Tagawa T, Kunieda H. Polymer-oil microemulsions. J Colloid Interface Sci. 1992;153(2):429–36.

    Article  CAS  Google Scholar 

  45. Castellino V, Cheng Y-L, Acosta E. The hydrophobicity of silicone-based oils and surfactants and their use in reactive microemulsions. J Colloid Interface Sci. 2011;353(1):196–205.

    Article  CAS  Google Scholar 

  46. Cui X, Qiao C, Wang S, Ding Y, Hao C, Li J. Synthesis, surface properties, and antibacterial activity of polysiloxane quaternary ammonium salts containing epoxy group. Colloid Polym Sci. 2015;293:1–11.

    Article  Google Scholar 

  47. Peng Z, Huang J, Chen F, Ye Q, Li Q. Syntheses and properties of ethoxylated double-tail trisiloxane surfactants containing a propanetrioxy spacer. Appl Organomet Chem. 2011;25(5):383–9.

    Article  CAS  Google Scholar 

  48. R-x Luo, P-p Liu, Y-b Chen. Synthesis and properties of a hydrolysis resistant cationic trisiloxane surfactant. J Surfactants Deterg. 2013;16(1):33–8.

    Article  Google Scholar 

  49. Tan J, Ma D, Feng S, Zhang C. Effect of headgroups on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloids Surf A. 2013;417:146–53.

    Article  CAS  Google Scholar 

  50. Sela Y, Magdassi S, Garti N. Newly designed polysiloxane-graft-poly(oxyethylene) copolymeric surfactants: preparation, surface activity and emulsification properties. Colloid Polym Sci. 1994;272(6):684–91.

    Article  CAS  Google Scholar 

  51. Sela Y, Magdassi S, Garti N. Polymeric surfactants based on polysiloxanes—graft-poly(oxyethylene) for stabilization of multiple emulsions. Colloids Surf A. 1994;83(2):143–50.

    Article  CAS  Google Scholar 

  52. Tığlı RS, Evren V. Synthesis and characterization of pure poly(acrylate) latexes. Prog Org Coat. 2005;52(2):144–50.

    Article  Google Scholar 

  53. Sarac A, Yildirim H. Semi-continuous emulsion copolymerization of vinyl acetate and butyl acrylate using a new protective colloid. Part 1. Effect of different emulsifiers. Polym Adv Technol. 2006;17(11):855–9.

    Article  CAS  Google Scholar 

  54. Kentish S, Wooster T, Ashokkumar M, Balachandran S, Mawson R, Simons L. The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol. 2008;9(2):170–5.

    Article  CAS  Google Scholar 

  55. Canselier J, Delmas H, Wilhelm A, Abismail B. Ultrasound emulsification—an overview. J Dispers Sci Technol. 2002;23(1–3):333–49.

    Article  CAS  Google Scholar 

  56. Duquesne S, Lefebvre J, Delobel R, Camino G, LeBras M, Seeley G. Vinyl acetate/butyl acrylate copolymers—part 1: mechanism of degradation. Polym Degrad Stab. 2004;83(1):19–28.

    Article  CAS  Google Scholar 

  57. Pichot C, Llauro MF, Pham QT. Microstructure of vinyl acetate–butyl acrylate copolymers studied by 13C-NMR spectroscopy: influence of emulsion polymerization process. J Polym Sci Polym Chem Ed. 1981;19(10):2619–33.

    Article  CAS  Google Scholar 

  58. Rahn-Chique K, Puertas AM, Romero-Cano MS, Rojas C, Urbina-Villalba G. Nanoemulsion stability: experimental evaluation of the flocculation rate from turbidity measurements. Adv Coll Interface Sci. 2012;178:1–20.

    Article  CAS  Google Scholar 

  59. Castelvetro V, De Vita C, Giannini G, Giaiacopi S. Role of anionic and nonionic surfactants on the control of particle size and latex colloidal stability in the seeded emulsion polymerization of butyl methacrylate. J Appl Polym Sci. 2006;102(4):3083–94.

    Article  CAS  Google Scholar 

  60. Krishnan S, Klein A, El-Aasser MS, Sudol ED. Effect of surfactant concentration on particle nucleation in emulsion polymerization of n-butyl methacrylate. Macromolecules. 2003;36(9):3152–9.

    Article  CAS  Google Scholar 

  61. Li H, Ren X, Lai X, Zeng X. Kinetics and effect of surfactant and cosurfactant on miniemulsion polymerization of acrylate monomers. J Coat Technol Res. 2014;11(6):959–66.

    Article  CAS  Google Scholar 

  62. Rodriguez C, Uddin MH, Furukawa H, Harashima A, Kunieda H. Effect of mixing lipophilic and hydrophilic silicone surfactant systems. Trends in colloid and interface science XV. Springer; 2001. p. 53–6.

  63. Malcolmson C, Satra C, Kantaria S, Sidhu A, Lawrence MJ. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. J Pharm Sci. 1998;87(1):109–16.

    Article  CAS  Google Scholar 

  64. Warisnoicharoen W, Lansley A, Lawrence M. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm. 2000;198(1):7–27.

    Article  CAS  Google Scholar 

  65. Wang L, Dong J, Chen J, Eastoe J, Li X. Design and optimization of a new self-nanoemulsifying drug delivery system. J Colloid Interface Sci. 2009;330(2):443–8.

    Article  CAS  Google Scholar 

  66. Tadros TF. An introduction to surfactants. Berlin: de Gruyter; 2014.

    Book  Google Scholar 

  67. Nomura M, Tobita H, Suzuki K. Emulsion polymerization: kinetic and mechanistic aspects. Polymer particles. Berlin: Springer; 2005. p. 1–128.

  68. Ai Z, Deng R, Zhou Q, Liao S, Zhang H. High solid content latex: preparation methods and application. Adv Coll Interface Sci. 2010;159(1):45–59.

    Article  CAS  Google Scholar 

  69. de FA Mariz I, Millichamp IS, José C, Leiza JR. High performance water-borne paints with high volume solids based on bimodal latexes. Prog Org Coat. 2010;68(3):225–33.

    Article  Google Scholar 

  70. Schneider M, Claverie J, Graillat C, McKenna T. High solids content emulsions. I. A study of the influence of the particle size distribution and polymer concentration on viscosity. J Appl Polym Sci. 2002;84(10):1878–96.

    Article  CAS  Google Scholar 

  71. Lazaridis N, Alexopoulos AH, Kiparissides C. Semi-batch emulsion copolymerization of vinyl acetate and butyl acrylate using oligomeric nonionic surfactants. Macromol Chem Phys. 2001;202(12):2614–22.

    Article  CAS  Google Scholar 

  72. Bai L, Gu J, Huan S, Li Z. Aqueous poly(vinyl acetate)-based core/shell emulsion: synthesis, morphology, properties and application. RSC Adv. 2014;4(52):27363–80.

    Article  CAS  Google Scholar 

  73. Ramli RA, Laftah WA, Hashim S. Core–shell polymers: a review. RSC Adv. 2013;3(36):15543–65.

    Article  CAS  Google Scholar 

  74. Sundberg DC, Durant YG. Latex particle morphology, fundamental aspects: a review. Polym React Eng. 2003;11(3):379–432.

    Article  CAS  Google Scholar 

  75. Bas S, Soucek MD. Optimization and comparison of polysiloxane acrylic hybrid latex synthesis methods. J Polym Res. 2012;19(7):1–11.

    Article  CAS  Google Scholar 

  76. Kozakiewicz J, Ofat I, Trzaskowska J. Silicone-containing aqueous polymer dispersions with hybrid particle structure. Adv Colloid Interface Sci. 2015;223:1–39.

    Article  CAS  Google Scholar 

  77. Czech Z, Agnieszka K, Ragańska P, Antosik A. Thermal stability and degradation of selected poly(alkyl methacrylates) used in the polymer industry. J Therm Anal Calorim. 2015;119(2):1157–61.

    Article  CAS  Google Scholar 

  78. Song M-G, Jho S-H, Kim J-Y, Kim J-D. Rapid evaluation of water-in-oil (W/O) emulsion stability by turbidity ratio measurements. J Colloid Interface Sci. 2000;230(1):213–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Samed Mfg. & Ind. Co. (Mashhad Adhesive), Mashhad, Iran and Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad (project code: 3/31205), Mashhad, Iran which are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Zohuri.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, R.E., Zohuri, G.H. & Gholami, M. Novel Synthesis Method and Characterization of Poly(vinyl acetate-butyl acrylate) Latex Particles: Effect of Silanol-Terminated Poly(dimethylsiloxane) Surfactant on the Seeded Emulsion Copolymerization. J Surfact Deterg 20, 891–904 (2017). https://doi.org/10.1007/s11743-017-1971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1971-7

Keywords

Navigation