Skip to main content
Log in

Effect of plasticizer on the conductivity of carboxymethyl cellulose-based solid polymer electrolyte

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Lithium ion conducting solid polymer electrolyte based on carboxymethyl cellulose (CMC) complexed with lithium tetrafluoroborate was prepared by using solution cast technique. Ionic conductivity was measured using ac impedance analyzer and observed as 8.2 × 10−6 S cm−1 at room temperature. For further enhancement in the conductivity, plasticizer was introduced and it reached up to 3.7 × 10−3 S cm−1 at room temperature. Structural characterization was performed by using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscope technique. XRD results show the amorphous nature of the electrolyte film. FTIR spectroscopic analysis confirmed the complexation of the salt and plasticizer with the polymer matrix. Differential scanning calorimetry was used to determine the glass transition and melting temperatures of pure CMC and CMC-based polymer electrolyte film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chandra S, Chandra A (1994) Solid state ionics: materials aspect. In: Proceedings of national academy of sciences India section, vol 64, pp 141–181

  2. Selvasekarapandian S, Baskaran R, Hema M (2005) Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc–NH4SCN polymer electrolytes. Physica B 357(3–4):412–419

    Article  CAS  Google Scholar 

  3. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    Article  CAS  Google Scholar 

  4. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Polym Int 7:319–327

    CAS  Google Scholar 

  5. Armand MB, Chabagno JM, Duclot MJ (1978) Poly-ethers as solid electrolytes. In: Proceedings of the second international meeting on solid electrolytes, 20

  6. Agnihotry SA, Pradeep P, Sekhon SS (1999) PMMA based gel electrolyte for EC smart windows. Electrochim Acta 44(18):3121–3126

    Article  CAS  Google Scholar 

  7. Bushkova OV, Animitsa IE, Lirova BI, Zhukovsky VM (1997) Lithium conducting solid polymer electrolytes based on polyacrylonitrile copolymers: ion solvation and transport properties. Ionics 3(5–6):396–404

    Article  CAS  Google Scholar 

  8. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Article  CAS  Google Scholar 

  9. Varshney PK, Gupta S (2011) Natural polymer-based electrolytes for electrochemical devices: a review. Ionics 17(6):479–483

    Article  CAS  Google Scholar 

  10. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20(4):1523–1545

    Article  CAS  Google Scholar 

  11. Zhu H, Fang Z, Preston C, Li Y, Hu L (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ Sci 7(1):269–287

    Article  CAS  Google Scholar 

  12. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769

    CAS  PubMed  Google Scholar 

  13. Gwon H, Hong J, Kim H, Seo DH, Jeon S, Kang K (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7(2):538–551

    Article  CAS  Google Scholar 

  14. Zhou G, Li F, Cheng HM (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7(4):1307–1338

    Article  CAS  Google Scholar 

  15. Lestriez B, Bahri S, Sandu I, Roué L, Guyomard D (2007) On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem Commun 9(12):2801–2806

    Article  CAS  Google Scholar 

  16. Seïd KA, Badot JC, Dubrunfaut O, Levasseur S, Guyomard D, Lestriez B (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon–LiFePO4 nanocomposites. J Mater Chem 22(45):24057–24066

    Article  Google Scholar 

  17. Ibrahim SM, El Salmawi KM (2013) Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J Polym Environ 21(2):520–527

    Article  CAS  Google Scholar 

  18. Spirk S (2018) Polysaccharides in batteries. In: Polysaccharides as battery components. Springer Briefs in Molecular Science. Springer, Cham

  19. Rani MSA, Rudhziah S, Ahmad A, Mohamed NS (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6(9):2371–2385

    Article  Google Scholar 

  20. Zhu YS, Xiao SY, Li MX, Chang Z, Wang FX, Gao J, Wu YP (2015) Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J Power Sources 288:368–375

    Article  CAS  Google Scholar 

  21. Zhang S, Xu K, Jow T (2003) Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J Solid State Electrochem 7(3):147–151

    Article  CAS  Google Scholar 

  22. Fahmi EM, Ahmad A, Nazeri NNM, Hamzah H, Razali H, Rahman MYA (2012) Effect of LiBF4 salt concentration on the properties of poly (ethylene oxide)-based composite polymer electrolyte. Int J Electrochem Sci 7:5798–5804

    CAS  Google Scholar 

  23. Ahmad A, Rahman MYA, Low SP, Hamzah H (2011) Effect of LiBF4 salt concentration on the properties of plasticized MG49-TiO2 based nanocomposite polymer electrolyte. ISRN Mater Sci 2011:401280-1–401280-7

    Article  Google Scholar 

  24. Sekhon SS, Pradeep, Agnihotry SA (1998) In: Chowdari BVR et al (eds) Solid state ionics: science and technology. World Scientific, Singapore, pp 217–221

    Google Scholar 

  25. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on microstructure and electrical properties of a sodium ion conducting composite polymer electrolyte. Ionics 11(1–2):95–102

    Article  CAS  Google Scholar 

  26. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on structure—property relationship in composite polymer electrolytes. J Power Sources 139(1–2):384–393

    Article  CAS  Google Scholar 

  27. Ahmad NH, Isa MIN (2015) Structural and ionic conductivity studies of CMC based polymerelectrolyte doped with NH4Cl. In: Advanced materials research. Trans Tech Publications, vol 1107, pp 247–252

  28. Shuhaimi NEA, Teo LP, Majid SR, Arof AK (2010) Transport studies of NH4NO3 doped methyl cellulose electrolyte. Synth Met 160(9–10):1040–1044

    Article  CAS  Google Scholar 

  29. Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Encyclopedia of analytical chemistry 10815

  30. Pushpamalar V, Langford SJ, Ahmad M, Lim YY (2006) Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohyd Polym 64(2):312–318

    Article  CAS  Google Scholar 

  31. Samsudin AS, Khairul WM, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J Non-Cryst Solids 358(8):1104–1112

    Article  CAS  Google Scholar 

  32. Silvertein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compound, 7th edn. Wiley, Hoboken, p 74

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to All India Council of Technical Education (AICTE) for providing research grant under Research Promotion Scheme. One of the authors Shikha Gupta is indebted to Dr. Kanupriya Sachdev, Coordinator, Materials Research Centre, Malaviya National Institute of Technology, Jaipur, for her permission to analyze the samples through X-ray diffractometer, FTIR, in their laboratory. Also special thanks to Dr. Anil Kumar Bhargava, Head, Department of Metallurgical & Materials Engineering, Malaviya National Institute of Technology, Jaipur for DSC characterization. We are grateful to Dean, Faculty of Engineering and Technology, Manav Rachna International University (formerly CITM Faridabad), Faridabad, for his kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Varshney, P.K. Effect of plasticizer on the conductivity of carboxymethyl cellulose-based solid polymer electrolyte. Polym. Bull. 76, 6169–6178 (2019). https://doi.org/10.1007/s00289-019-02714-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02714-1

Keywords

Navigation