Skip to main content
Log in

Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Aiming to fabricate highly flexible conductors via a facile method, hybrid fillers of carbon nanotubes (CNTs) and carbon fiber (CF) were incorporated with polydimethylsiloxane (PDMS) using a solution blending method. The results showed that the hybrid fillers evidently decreased the composite resistivity and the lowest resistivity was achieved with the composite that had 6:4 CNT/CF ratio when the total filler content was 1 wt%. Due to the low filler content, the stretching strains of the composites reached greater than 200%, and the conductive network which was formed by flexible CNT and rigid CF was sensitive to strain and the related resistance change of resulted composites reached 2480.5% with a gauge factor of 50. The alternating current electrical, rheological and morphological property measurements were performed, and the results presented the existence of synergistic effect between the hybrid fillers in the conductive networks which decreased resistivity of composites. Therefore, the PDMS/CNT/CF nanocomposites are good candidates for application as inflexible sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang B, Li B, Jiang S (2017) Noncovalently functionalized multi-walled carbon nanotube with core-dualshell nanostructure for improved piezoresistive sensitivity of poly(dimethyl siloxane) nanocomposites. Compos A Appl Sci Manuf 94:124–132. https://doi.org/10.1016/j.compositesa.2016.12.008

    Article  CAS  Google Scholar 

  2. Wang N, Jiang D, Ye L, Murugesan M, Edwards M, Fu Y, Liu J (2015) Flexible multifunctionalized carbon nanotubes-based hybrid nanowires. Adv Func Mater 25(26):4135–4143. https://doi.org/10.1002/adfm.201501017

    Article  CAS  Google Scholar 

  3. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T (2015) Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Func Mater 25(21):3114–3121. https://doi.org/10.1002/adfm.201500628

    Article  CAS  Google Scholar 

  4. Selvan NT, Eshwaran SB, Das A, Stöckelhuber KW, Wießner S, Pötschke P, Nando GB, Chervanyov AI, Heinrich G (2016) Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sens Actuators A 239:102–113. https://doi.org/10.1016/j.sna.2016.01.004

    Article  CAS  Google Scholar 

  5. Brown DA, Kim JH, Lee HB, Fotouhi G, Lee KH, Liu WK, Chung JH (2012) Electric field guided assembly of one-dimensional nanostructures for high performance sensors. Sensors 12(5):5725–5751. https://doi.org/10.3390/s120505725

    Article  PubMed  Google Scholar 

  6. Boland CS, Khan U, Backes C, O’Neill A, Mccauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8(9):8819–8830

    Article  CAS  Google Scholar 

  7. Yogeswaran N, Khan S, Dang W, Polat EO (2015) Tuning electrical conductivity of CNT–PDMS nanocomposites for flexible electronic applications. In: IEEE international conference on nanotechnology, pp 1441–1444

  8. Roh E, Hwang BU, Kim D, Kim BY, Lee NE (2015) Stretchable, transparent, ultra-sensitive and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9(6):6252–6261

    Article  CAS  Google Scholar 

  9. Wu S, Zhang J, Ladani RB, Ravindran AR, Mouritz AP, Kinloch AJ, Wang CH (2017) Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors. ACS Appl Mater Interfaces 9(16):14207–14215. https://doi.org/10.1021/acsami.7b00847

    Article  CAS  PubMed  Google Scholar 

  10. Giffney T, Bejanin E, Kurian AS, Travas-Sejdic J, Aw K (2017) Highly stretchable printed strain sensors using multi-walled carbon nanotube/silicone rubber composites. Sens Actuators A 259:44–49. https://doi.org/10.1016/j.sna.2017.03.005

    Article  CAS  Google Scholar 

  11. Xi W, Yeo JC, Yu L, Zhang S, Lim CT (2017) Ultrathin and wearable microtubular epidermal sensor for real-time physiological pulse monitoring. Adv Mater Technol 2(5):1700016. https://doi.org/10.1002/admt.201700016

    Article  Google Scholar 

  12. Li Y, Zhao M, Chen J, Fan S, Liang J, Ding L, Chen S (2016) Flexible chitosan/carbon nanotubes aerogel, a robust matrix for in situ growth and non-enzymatic biosensing applications. Sens Actuators B Chem 232:750–757. https://doi.org/10.1016/j.snb.2016.04.023

    Article  CAS  Google Scholar 

  13. Bowden N, Huck WTS, Paul KE, Whitesides GM (1999) The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl Phys Lett 75(17):2557–2559. https://doi.org/10.1063/1.125076

    Article  CAS  Google Scholar 

  14. Lacour SP, Wagner S, Huang Z, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82(15):2404–2406. https://doi.org/10.1063/1.1565683

    Article  CAS  Google Scholar 

  15. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6(12):788–792. https://doi.org/10.1038/nnano.2011.184

    Article  CAS  PubMed  Google Scholar 

  16. Kim KH, Vural M, Islam MF (2011) Single-walled carbon nanotube aerogel-based elastic conductors. Adv Mater 23(25):2865–2869. https://doi.org/10.1002/adma.201100310

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  PubMed  Google Scholar 

  18. Yan C, Wang J, Kang W, Cui M, Wang X, Foo CY, Chee KJ, Lee PS (2014) Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027. https://doi.org/10.1002/adma.201304742

    Article  CAS  PubMed  Google Scholar 

  19. Goel P, Singh JP (2014) Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. J Phys D Appl Phys 48(44):445303. https://doi.org/10.1088/0022-3727/48/44/445303

    Article  CAS  Google Scholar 

  20. Su M, Li F, Chen S, Huang Z, Qin M, Li W, Zhang X, Song Y (2016) Nanoparticle based curve arrays for multirecognition flexible electronics. Adv Mater 28(7):1369–1374. https://doi.org/10.1002/adma.201504759

    Article  CAS  PubMed  Google Scholar 

  21. Lee H, Seong B, Moon H, Byun D (2015) Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes. RSC Adv 5(36):28379–28384. https://doi.org/10.1039/c5ra01519g

    Article  CAS  Google Scholar 

  22. Choong CL, Shim MB, Lee BS, Jeon S, Ko DS, Kang TH, Bae J, Lee SH, Byun KE, Im J, Jeong YJ, Park CE, Park JJ, Chung UI (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26(21):3451–3458. https://doi.org/10.1002/adma.201305182

    Article  CAS  PubMed  Google Scholar 

  23. Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C (2016) Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network. ACS Appl Mater Interfaces 8(3):2187–2192. https://doi.org/10.1021/acsami.5b10791

    Article  CAS  PubMed  Google Scholar 

  24. Li YQ, Huang P, Zhu WB, Fu SY, Hu N, Liao K (2017) Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci Rep 7:45013. https://doi.org/10.1038/srep45013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6(4):2345–2352. https://doi.org/10.1039/c3nr05496a

    Article  CAS  PubMed  Google Scholar 

  26. Huang W, Li J, Zhao S, Han F, Zhang G, Sun R, Wong C-P (2017) Highly electrically conductive and stretchable copper nanowires-based composite for flexible and printable electronics. Compos Sci Technol 146:169–176. https://doi.org/10.1016/j.compscitech.2017.04.030

    Article  CAS  Google Scholar 

  27. Li Y, Shimizu H (2009) Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42(7):2587–2593. https://doi.org/10.1021/ma802662c

    Article  CAS  Google Scholar 

  28. Ma L-F, Bao R-Y, Dou R, Zheng S-D, Liu Z-Y, Zhang R-Y, Yang M-B, Yang W (2016) Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: from strain sensor to highly stretchable conductor. Compos Sci Technol 128:176–184. https://doi.org/10.1016/j.compscitech.2016.04.001

    Article  CAS  Google Scholar 

  29. Lin L, Liu S, Fu S, Zhang S, Deng H, Fu Q (2013) Fabrication of highly stretchable conductors via morphological control of carbon nanotube network. Small 9(21):3620–3629. https://doi.org/10.1002/smll.201202306

    Article  CAS  PubMed  Google Scholar 

  30. Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21(6):631–651. https://doi.org/10.1016/j.mattod.2017.11.003

    Article  CAS  Google Scholar 

  31. Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85–90. https://doi.org/10.1016/j.compscitech.2012.10.008

    Article  CAS  Google Scholar 

  32. Zhang R, Tang P, Li J, Xu D, Bin Y (2014) Study on filler content dependence of the onset of positive temperature coefficient (PTC) effect of electrical resistivity for UHMWPE/LDPE/CF composites based on their DC and AC electrical behaviors. Polymer 55(8):2103–2112. https://doi.org/10.1016/j.polymer.2014.02.065

    Article  CAS  Google Scholar 

  33. Kumar V, Lee J-Y, Lee D-J (2017) Synergistic effects of hybrid carbon nanomaterials in room-temperature-vulcanized silicone rubber. Polym Int 66(3):450–458. https://doi.org/10.1002/pi.5283

    Article  CAS  Google Scholar 

  34. Lee T-W, Park H-H (2015) The effect of MWCNTs on the electrical properties of a stretchable carbon composite electrode. Compos Sci Technol 114:11–16. https://doi.org/10.1016/j.compscitech.2015.03.020

    Article  CAS  Google Scholar 

  35. Leyva Egurrola S, del Castillo Castro T, Castillo Ortega MM, Encinas JC, Herrera Franco PJ, Bonilla Cruz J, Lara Ceniceros TE (2017) Electrical, mechanical, and piezoresistive properties of carbon nanotube-polyaniline hybrid filled polydimethylsiloxane composites. J Appl Polym Sci. https://doi.org/10.1002/app.44780

    Article  Google Scholar 

  36. Li L, Zhu C, Wu Y, Wang J, Zhang T, Liu Y (2015) A conductive ternary network of a highly stretchable AgNWs/AgNPs conductor based on a polydopamine-modified polyurethane sponge. RSC Adv 5(77):62905–62912. https://doi.org/10.1039/c5ra10961b

    Article  CAS  Google Scholar 

  37. Ning N, Liu S, Shao Q, Yan S, Zou H, Zhang L, Tian M (2014) Conductivity stability and its relationship with the filler network structure of elastomer composites with combined fibrous/layered nickel-coated fillers. RSC Adv 4(61):32482–32489. https://doi.org/10.1039/c4ra03786c

    Article  CAS  Google Scholar 

  38. Oh JY, Jun GH, Jin S, Ryu HJ, Hong SH (2016) Enhanced electrical networks of stretchable conductors with small fraction of carbon nanotube/graphene hybrid fillers. ACS Appl Mater Interfaces 8(5):3319–3325. https://doi.org/10.1021/acsami.5b11205

    Article  CAS  PubMed  Google Scholar 

  39. Tang P, Zhang R, Shi R, Bin Y (2014) Synergetic effects of carbon nanotubes and carbon fibers on electrical and self-heating properties of high-density polyethylene composites. J Mater Sci 50(4):1565–1574. https://doi.org/10.1007/s10853-014-8716-z

    Article  CAS  Google Scholar 

  40. Tai Z, Liu Y, Liu H, Dou S (2016) Self-monitoring and self-correcting polymer fibers coated with carbon nanotubes. Carbon 109:428–434. https://doi.org/10.1016/j.carbon.2016.08.046

    Article  CAS  Google Scholar 

  41. Zhang R, Bin Y, Chen R, Matsuo M (2013) Evaluation by tunneling effect for the temperature-dependent electric conductivity of polymer-carbon fiber composites with visco-elastic properties. Polym J 45(11):1120–1134. https://doi.org/10.1038/pj.2013.40

    Article  CAS  Google Scholar 

  42. Garlof S, Mecklenburg M, Smazna D, Mishra YK, Adelung R, Schulte K, Fiedler B (2017) 3D carbon networks and their polymer composites: fabrication and electromechanical investigations of neat Aerographite and Aerographite-based PNCs under compressive load. Carbon 111:103–112. https://doi.org/10.1016/j.carbon.2016.09.046

    Article  CAS  Google Scholar 

  43. Chechenin NG, Chernykh PN, Vorobyeva EA, Timofeev OS (2013) Synthesis and electroconductivity of epoxy/aligned CNTs composites. Appl Surf Sci 275:217–221. https://doi.org/10.1016/j.apsusc.2012.12.162

    Article  CAS  Google Scholar 

  44. Ferrara M, Neitzert H-C, Sarno M, Gorrasi G, Sannino D, Vittoria V, Ciambelli P (2007) Influence of the electrical field applied during thermal cycling on the conductivity of LLDPE/CNT composites. Phys E 37(1–2):66–71. https://doi.org/10.1016/j.physe.2006.10.008

    Article  CAS  Google Scholar 

  45. Gao JF, Li ZM, Peng S, Yan DX (2009) Temperature-resistivity behaviour of CNTs/UHMWPE composites with a two-dimensional conductive network. Polym Plast Technol Eng 48(4):478–481. https://doi.org/10.1080/03602550902725480

    Article  CAS  Google Scholar 

  46. Gao J-F, Li Z-M, Q-j Meng, Yang Q (2008) CNTs/UHMWPE composites with a two-dimensional conductive network. Mater Lett 62(20):3530–3532. https://doi.org/10.1016/j.matlet.2008.03.053

    Article  CAS  Google Scholar 

  47. Mohiuddin M, Hoa SV (2011) Temperature dependent electrical conductivity of CNT–PEEK composites. Compos Sci Technol 72(1):21–27. https://doi.org/10.1016/j.compscitech.2011.08.018

    Article  CAS  Google Scholar 

  48. Singh IV, Tanaka M, Zhang J, Endo M (2007) Evaluation of effective thermal conductivity of CNT-based nano-composites by element free Galerkin method. Int J Numer Methods Heat Fluid Flow 17(8):757–769. https://doi.org/10.1108/09615530710825756

    Article  Google Scholar 

  49. Garlof S, Fukuda T, Mecklenburg M, Smazna D, Mishra YK, Adelung R, Schulte K, Fiedler B (2016) Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy composites. Compos Sci Technol 134:226–233. https://doi.org/10.1016/j.compscitech.2016.08.019

    Article  CAS  Google Scholar 

  50. Angelov V, Velichkova H, Ivanov E, Kotsilkova R, Delville MH, Cangiotti M, Fattori A, Ottaviani MF (2014) EPR and rheological study of hybrid interfaces in gold–clay–epoxy nanocomposites. Langmuir 30(44):13411–13421. https://doi.org/10.1021/la503361k

    Article  CAS  PubMed  Google Scholar 

  51. Brady JF (1993) The rheological behavior of concentrated colloidal dispersions. J Chem Phys 99(1):567–581. https://doi.org/10.1063/1.465782

    Article  CAS  Google Scholar 

  52. Jin ZH, Liu YL, Chen JJ, Cai SL, Xu JQ, Huang WH (2017) Conductive polymer-coated carbon nanotubes to construct stretchable and transparent electrochemical sensors. Anal Chem 89(3):2032–2038. https://doi.org/10.1021/acs.analchem.6b04616

    Article  CAS  PubMed  Google Scholar 

  53. Lee T-W, Lee S-E, Jeong YG (2016) Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol 131:77–87. https://doi.org/10.1016/j.compscitech.2016.06.003

    Article  CAS  Google Scholar 

  54. Rostami A, Nazockdast H, Karimi M (2016) Graphene induced microstructural changes of PLA/MWCNT biodegradable nanocomposites: rheological, morphological, thermal and electrical properties. RSC Adv 6(55):49747–49759. https://doi.org/10.1039/c6ra08345e

    Article  CAS  Google Scholar 

  55. Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J Appl Polym Sci 110(2):1175–1181. https://doi.org/10.1002/app.28733

    Article  CAS  Google Scholar 

  56. Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46(2):231–238. https://doi.org/10.1007/s00397-006-0137-8

    Article  CAS  Google Scholar 

  57. Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562. https://doi.org/10.1007/s00397-005-0436-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Nature Science Foundation of China (NSFC) (Nos. 51503061 and 31270610), Youth Program of Hubei Provincial Science and Technology Department (No. 2015CFB322), and Science Research Fund of Hubei Provincial Technology Department (No. 2015BAA094). We thank Science Docs Inc. for language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengfei Hu or Rong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Hu, S., Zhang, R. et al. Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers. Polym. Bull. 76, 6487–6501 (2019). https://doi.org/10.1007/s00289-019-02705-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02705-2

Keywords

Navigation